Search for authorsSearch for similar articles
46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review of Fast Monte Carlo Codes for Dose Calculation in Radiation Therapy Treatment Planning

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An important requirement in radiation therapy is a fast and accurate treatment planning system. This system, using computed tomography (CT) data, direction, and characteristics of the beam, calculates the dose at all points of the patient's volume. The two main factors in treatment planning system are accuracy and speed. According to these factors, various generations of treatment planning systems are developed. This article is a review of the Fast Monte Carlo treatment planning algorithms, which are accurate and fast at the same time. The Monte Carlo techniques are based on the transport of each individual particle (e.g., photon or electron) in the tissue. The transport of the particle is done using the physics of the interaction of the particles with matter. Other techniques transport the particles as a group. For a typical dose calculation in radiation therapy the code has to transport several millions particles, which take a few hours, therefore, the Monte Carlo techniques are accurate, but slow for clinical use. In recent years, with the development of the ‘fast’ Monte Carlo systems, one is able to perform dose calculation in a reasonable time for clinical use. The acceptable time for dose calculation is in the range of one minute. There is currently a growing interest in the fast Monte Carlo treatment planning systems and there are many commercial treatment planning systems that perform dose calculation in radiation therapy based on the Monte Carlo technique.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          BEAM: a Monte Carlo code to simulate radiotherapy treatment units.

          This paper describes BEAM, a general purpose Monte Carlo code to simulate the radiation beams from radiotherapy units including high-energy electron and photon beams, 60Co beams and orthovoltage units. The code handles a variety of elementary geometric entities which the user puts together as needed (jaws, applicators, stacked cones, mirrors, etc.), thus allowing simulation of a wide variety of accelerators. The code is not restricted to cylindrical symmetry. It incorporates a variety of powerful variance reduction techniques such as range rejection, bremsstrahlung splitting and forcing photon interactions. The code allows direct calculation of charge in the monitor ion chamber. It has the capability of keeping track of each particle's history and using this information to score separate dose components (e.g., to determine the dose from electrons scattering off the applicator). The paper presents a variety of calculated results to demonstrate the code's capabilities. The calculated dose distributions in a water phantom irradiated by electron beams from the NRC 35 MeV research accelerator, a Varian Clinac 2100C, a Philips SL75-20, an AECL Therac 20 and a Scanditronix MM50 are all shown to be in good agreement with measurements at the 2 to 3% level. Eighteen electron spectra from four different commercial accelerators are presented and various aspects of the electron beams from a Clinac 2100C are discussed. Timing requirements and selection of parameters for the Monte Carlo calculations are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations.

            A new Monte Carlo (MC) algorithm, the 'dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 128(3) voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a 'mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The delta-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm.

              M Fippel (1999)
              A new Monte Carlo algorithm for 3D photon dose calculation in radiation therapy is presented, which is based on the previously developed Voxel Monte Carlo (VMC) for electron beams. The main result is that this new version of VMC (now called XVMC) is more efficient than EGS4/PRESTA photon dose calculation by a factor of 15-20. Therefore, a standard treatment plan for photons can be calculated by Monte Carlo in about 20 min. on a "normal" personal computer. The improvement is caused mainly by the fast electron transport algorithm and ray tracing technique, and an initial ray tracing method to calculate the number of electrons created in each voxel by the primary photon beam. The model was tested in comparison to calculations by EGS4 using several fictive phantoms. In most cases a good coincidence has been found between both codes. Only within lung substitute dose differences have been observed.
                Bookmark

                Author and article information

                Journal
                J Med Signals Sens
                JMSS
                Journal of Medical Signals and Sensors
                Medknow Publications & Media Pvt Ltd (India )
                2228-7477
                2228-7477
                Jan-Apr 2011
                : 1
                : 1
                : 73-86
                Affiliations
                [1] Department of Medical Physics and Engineering, School of Medicine, and Medical Image & Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan Iran
                Author notes
                Address for correspondence: Mr. Keyvan Jabbari, Department of Medical Physics and Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran E-mail: jabbari@ 123456med.mui.ac.ir
                Article
                JMSS-1-73
                10.4103/2228-7477.83522
                3317764
                22606661
                9dadd5c7-ddb2-43a0-b05a-579aa067607a
                Copyright: © Journal of Medical Signals and Sensors

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review Article

                Radiology & Imaging
                dose calculation,monte carlo,radiation therapy
                Radiology & Imaging
                dose calculation, monte carlo, radiation therapy

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content296

                Cited by13

                Most referenced authors555