10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors?

      , , , ,
      Molecular Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterium bovis BCG secretes two ATP-scavenging enzymes, nucleoside diphosphate kinase (Ndk) and ATPase, during growth in Middlebrook 7H9 medium. In synthetic Sauton medium without any protein supplements, there is less secretion of these two enzymes unless proteins such as bovine serum albumin (BSA), ovalbumin or extracts of macrophages are added to the medium. There is a gradient of activity among various proteins in triggering the induction of secretion of these two enzymes. Other mycobacteria, such as M. smegmatis, primarily secrete Ndk, while M. chelonae does not appear to secrete either of these two enzymes. Purification of the enzymes from the culture filtrate of 7H9-grown M. bovis BCG cells and determination of the N-terminal amino-acid sequence have demonstrated a high level of sequence identity of one of the ATPases with DnaK, a heat shock chaperone, of M. tuberculosis and M. leprae, while that of Ndk shows significant identity with the Ndk of Myxococcus xanthus. As both Ndk and ATPase use ATP as a substrate, the physiological significance of the secretion of these two ATP-utilizing enzymes was explored. External ATP is important in the activation of macrophage surface-associated P2Z receptors, whose activation has been postulated to allow phagosome-lysosome fusion and macrophage cell death. We demonstrate that the presence of the filtrate containing these enzymes prevents ATP-induced macrophage cell death, as measured by the release of an intracellular enzyme, lactate dehydrogenase. In vitro complexation studies with purified Ndk/ATPase and hyperproduced P2Z receptor protein will demonstrate whether these enzymes may be used by mycobacteria to sequester ATP from the macrophage P2Z receptors, thereby preventing phagosome-lysosome fusion or macrophage apoptotic death.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin

          We have examined the effect of killing of host monocytes infected with bacillus Calmette-Guerin (BCG) on the viability of the intracellular mycobacteria. Peripheral blood monocytes were infected in vitro with a single bacillus per cell and maintained in culture for 6-8 d to allow the bacilli to replicate. Replicating viable BCG were found singly in perinuclear vacuoles bounded by tightly apposed lipid bilayers. Monocytes were then exposed to toxic mediators that induced killing of cells as evaluated by 51Cr release into the culture medium. Both hydrogen peroxide (H2O2) (an inducer of cell necrosis) and adenosine triphosphate (ATP4-) (an inducer of cell apoptosis) treatment killed infected monocytes. H2O2-induced killing had no effect on BCG viability. ATP-induced cell death was accompanied by DNA fragmentation and nuclear condensation. Apoptosis was associated with a swelling of the phagocytic vacuoles which became multibacillary and with a reduction of BCG viability as enumerated by colony-forming units.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis.

            A novel immunogenic antigen, the 6-kDa early secretory antigenic target (ESAT-6), from short-term culture filtrates of Mycobacterium tuberculosis was purified by hydrophobic interaction chromatography and anion-exchange chromatography by use of fast protein liquid chromatography. The antigen focused at two different pIs of 4.0 and 4.5 during isoelectric focusing, and each of these components separated into three spots ranging from 4 to 6 kDa during two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent differences in molecular masses or pIs of these isoforms were not due to posttranslational glycosylation. The molecular weight of the purified native protein was determined by applying gel filtration and nondenaturing polyacrylamide gel electrophoresis and found to be 24 kDa. ESAT-6 is recognized by the murine monoclonal antibody HYB 76-8, which was used to screen a recombinant lambda gt11 M. tuberculosis DNA library. A phage expressing a gene product recognized by HYB 76-8 was isolated, and a 1.7-kbp fragment of the mycobacterial DNA insert was sequenced. The structural gene of ESAT-6 was identified as the sequence encoding a polypeptide of 95 amino acids. The N terminus of the deduced sequence could be aligned with the 10 amino-terminal amino acids derived from sequence analyses of the native protein. N-terminal sequence analysis showed that the purified antigen was essentially free from contaminants, and the amino acid analysis of the antigen was in good agreement with the DNA sequence-deduced amino acid composition. Thus, the heterogeneities observed in the pI and molecular weight of the purified antigen do not derive from contaminating proteins but are most likely due to heterogeneity of the antigen itself. Native and recombinant ESAT-6 are immunologically active in that both elicited a high release of gamma interferon from T cells isolated from memory-immune mice challenged with M. tuberculosis. Analyses of subcellular fractions of M. tuberculosis showed the presence of ESAT-6 in cytosol- and cell wall-containing fractions. Interspecies analyses showed the presence of ESAT-6 in filtrates from M. tuberculosis complex species. Among filtrates from mycobacteria not belonging to the M. tuberculosis complex, reactivity was observed in Mycobacterium kansasii, Mycobacterium szulgai, and Mycobacterium marinum.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors.

              The death of BCG-infected human macrophages induced in vitro by ligation of surface CD95 (Fas), CD69, or complement-mediated lysis was shown not to result in the death of intracellular mycobacteria, whereas exposure to extracellular ATP initiated both macrophage death and killed the intracellular bacteria. ATP acted via P2Z receptors because these effects were mimicked by benzoylbenzoic ATP (a known agonist of P2Z receptors) and blocked by oxidized ATP, DIDS, suramin, amiloride, and KN62 (known inhibitors of P2Z-mediated responses). ATP-mediated bacterial killing was independent of reactive nitrogen and oxygen intermediates and of actinomycin D or cycloheximide inhibition. ATP-induced macrophage cell death, BCG killing, and lucifer yellow dye incorporation were minimal in 2 out of 19 healthy donors. The results suggest possible genetic heterogeneity of this mechanism of mycobacterial killing associated with P2Z-mediated pore formation.
                Bookmark

                Author and article information

                Journal
                Molecular Microbiology
                Mol Microbiol
                Wiley
                0950-382X
                1365-2958
                March 1999
                March 1999
                : 31
                : 5
                : 1333-1343
                Article
                10.1046/j.1365-2958.1999.01240.x
                10200955
                9da98ced-a21c-479d-a0cb-1bc49e13b415
                © 1999

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article