7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic remodeling postmyocardial infarction consists in various maladaptive changes including interstitial fibrosis, cardiomyocyte death and mitochondrial dysfunction that lead to heart failure (HF). Reactive aldehydes such as 4-hydroxynonenal (4-HNE) are critical mediators of mitochondrial dysfunction but the sources of mitochondrial 4-HNE in cardiac diseases together with its mechanisms of action remain poorly understood. Here, we evaluated whether the mitochondrial enzyme monoamine oxidase-A (MAO-A), which generates H2O2 as a by-product of catecholamine metabolism, is a source of deleterious 4-HNE in HF. We found that MAO-A activation increased mitochondrial ROS and promoted local 4-HNE production inside the mitochondria through cardiolipin peroxidation in primary cardiomyocytes. Deleterious effects of MAO-A/4-HNE on cardiac dysfunction were prevented by activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2), the main enzyme for 4-HNE metabolism. Mechanistically, MAO-A-derived 4-HNE bound to newly identified targets VDAC and MCU to promote ER-mitochondria contact sites and MCU higher-order complex formation. The resulting mitochondrial Ca2+ accumulation participated in mitochondrial respiratory dysfunction and loss of membrane potential, as shown with the protective effects of the MCU inhibitor, RU360. Most interestingly, these findings were recapitulated in a chronic model of ischemic remodeling where pharmacological or genetic inhibition of MAO-A protected the mice from 4-HNE accumulation, MCU oligomer formation and Ca2+ overload, thus mitigating ventricular dysfunction. To our knowledge, these are the first evidences linking MAO-A activation to mitoCa2+ mishandling through local 4-HNE production, contributing to energetic failure and postischemic remodeling.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria as sensors and regulators of calcium signalling.

          During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU)

            Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU-/- mice have no apparent capacity to rapidly uptake calcium. While basal metabolism appears unaffected, the skeletal muscle of MCU-/- mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU-/- mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU-/- mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not appear to protect MCU-/- cells and tissues from cell death, although MCU-/- hearts fail to respond to the PTP inhibitor cyclosporin A (CsA). Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial calcium overload is a key determinant in heart failure.

              Calcium (Ca2+) released from the sarcoplasmic reticulum (SR) is crucial for excitation-contraction (E-C) coupling. Mitochondria, the major source of energy, in the form of ATP, required for cardiac contractility, are closely interconnected with the SR, and Ca2+ is essential for optimal function of these organelles. However, Ca2+ accumulation can impair mitochondrial function, leading to reduced ATP production and increased release of reactive oxygen species (ROS). Oxidative stress contributes to heart failure (HF), but whether mitochondrial Ca2+ plays a mechanistic role in HF remains unresolved. Here, we show for the first time, to our knowledge, that diastolic SR Ca2+ leak causes mitochondrial Ca2+ overload and dysfunction in a murine model of postmyocardial infarction HF. There are two forms of Ca2+ release channels on cardiac SR: type 2 ryanodine receptors (RyR2s) and type 2 inositol 1,4,5-trisphosphate receptors (IP3R2s). Using murine models harboring RyR2 mutations that either cause or inhibit SR Ca2+ leak, we found that leaky RyR2 channels result in mitochondrial Ca2+ overload, dysmorphology, and malfunction. In contrast, cardiac-specific deletion of IP3R2 had no major effect on mitochondrial fitness in HF. Moreover, genetic enhancement of mitochondrial antioxidant activity improved mitochondrial function and reduced posttranslational modifications of RyR2 macromolecular complex. Our data demonstrate that leaky RyR2, but not IP3R2, channels cause mitochondrial Ca2+ overload and dysfunction in HF.
                Bookmark

                Author and article information

                Journal
                Cell Death & Differentiation
                Cell Death Differ
                Springer Science and Business Media LLC
                1350-9047
                1476-5403
                December 9 2019
                Article
                10.1038/s41418-019-0470-y
                7244724
                31819159
                9d9de4f9-ca73-4e2a-a900-2e4e76d81b96
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article