26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α 1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-β-induced toxicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          One hallmark of Alzheimer disease is microglial activation. Therapeutic approaches for this neurodegenerative disease include the modulation of microglial cells. α 1-antitrypsin (A1AT) has been shown to exert anti-inflammatory effects on macrophages and lung epithelial cells and an inhibition of calpain activity in neutrophil granulocytes. Nothing is known about the effect of A1AT on microglial-mediated neuroinflammation. Our aim was to investigate the effect of A1AT on amyloid-β (Aβ)- and LPS-treated microglial cells in vitro with respect to cytokine production, stress pathways, cell viability, phagocytotic abilities and the underlying mechanisms.

          Methods

          Primary microglial cells were isolated from Swiss Webster mouse embryos on embryonic day 13.5. Cytokines in the supernatants of treated primary microglial cells were analyzed with ELISAs, and accumulated nitrite was detected with Griess reagents. Intracellular stress pathways were investigated in cell lysates using western blotting. Intracellular calcium levels were detected in BV-2 microglial cells loaded with the Ca 2+-sensitive (fluorescent) dye Fluo-4. Calpain activity in primary microglial cells was assessed by using a calpain activity assay. Cell viability of Aβ-treated microglial cells was analyzed using MTT assay. Phagocytosis of Aβ was evaluated with western blot analysis.

          Results

          Upon co-administration, A1AT reduced pro-inflammatory mediators induced by LPS or Aβ. Interestingly, we detected a reduction in calpain activity and in the concentration of intracellular calcium that might mediate the anti-inflammatory effects of A1AT. Inhibition of the classic activation pathways, such as phosphorylation of mitogen-activated protein kinases or activation of protein kinase A were excluded as a mechanism of A1AT-mediated effects. In addition, A1AT increased the viability of Aβ-treated microglial cells and reduced Aβ phagocytosis.

          Conclusions

          We provide evidence on the mechanism of action of A1AT on microglial-mediated neuroinflammation in vitro. Our in vitro data indicate that A1AT treatment modulates microglial cells in inflammatory conditions and that this modulation is due to an inhibition of calpain activity and intracellular calcium levels. The underlying mechanisms of the effects observed here are promising for future therapeutic strategies and should thus be further pursued in transgenic mouse models of Alzheimer disease.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and Alzheimer's disease.

          Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia and neurodegeneration: the role of systemic inflammation.

            It is well accepted that CNS inflammation has a role in the progression of chronic neurodegenerative disease, although the mechanisms through which this occurs are still unclear. The inflammatory response during most chronic neurodegenerative disease is dominated by the microglia and mechanisms by which these cells contribute to neuronal damage and degeneration are the subject of intense study. More recently it has emerged that systemic inflammation has a significant role to play in the progression of these diseases. Well-described adaptive pathways exist to transduce systemic inflammatory signals to the brain, but activation of these pathways appears to be deleterious to the brain if the acute insult is sufficiently robust, as in severe sepsis, or sufficiently prolonged, as in repeated stimulation with robust doses of inflammogens such as lipopolysaccharide (LPS). Significantly, moderate doses of inflammogens produce new pathology in the brain and exacerbate or accelerate features of disease when superimposed upon existing pathology or in the context of genetic predisposition. It is now apparent in multiple chronic disease states, and in ageing, that microglia are primed by prior pathology, or by genetic predisposition, to respond more vigorously to subsequent inflammatory stimulation, thus transforming an adaptive CNS inflammatory response to systemic inflammation, into one that has deleterious consequences for the individual. In this review, the preclinical and clinical evidence supporting a significant role for systemic inflammation in chronic neurodegenerative diseases will be discussed. Mechanisms by which microglia might effect neuronal damage and dysfunction, as a consequence of systemic stimulation, will be highlighted. Copyright © 2012 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease.

                Bookmark

                Author and article information

                Contributors
                goldm@staff.uni-marburg.de
                dolga@staff.uni-marburg.de
                koepke@staff.uni-marburg.de
                dmengel@med.uni-marburg.de
                culmsee@uni-marburg.de
                dodel@med.uni-marburg.de
                koczulla@med.uni-marburg.de
                bachjan@staff.uni-marburg.de
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                23 September 2014
                23 September 2014
                2014
                : 11
                : 1
                : 165
                Affiliations
                [ ]Department of Neurology, University of Marburg, Baldingerstr, 35043 Marburg, Germany
                [ ]Department of Pharmacology und Clinical Pharmacy, University of Marburg, Karl-v.-Frisch-Str. 1, 35043 Marburg, Germany
                [ ]Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Baldingerstr, 35043 Marburg, Germany
                Article
                165
                10.1186/s12974-014-0165-8
                4177587
                25245568
                9d71d1cf-827b-4bc5-9e47-03fa6473aa45
                © Gold et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 June 2014
                : 4 September 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2014

                Neurosciences
                calpain,alpha-1 antitrypsin,cytokine,amyloid-β,lipopolysaccharide (lps),alzheimer disease

                Comments

                Comment on this article