1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathogenesis, Diagnosis, and Clinical Implications of Hereditary Hemochromatosis—The Cardiological Point of View

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hereditary hemochromatosis (HH) is a genetic disease leading to excessive iron absorption, its accumulation, and oxidative stress induction causing different organ damage, including the heart. The process of cardiac involvement is slow and lasts for years. Cardiac pathology manifests as an impaired diastolic function and cardiac hypertrophy at first and as dilatative cardiomyopathy and heart failure with time. From the moment of heart failure appearance, the prognosis is poor. Therefore, it is crucial to prevent those lesions by upfront therapy at the preclinical phase of the disease. The most useful diagnostic tool for detecting cardiac involvement is echocardiography. However, during an early phase of the disease, when patients do not present severe abnormalities in serum iron parameters and severe symptoms of other organ involvement, heart damage may be overlooked due to the lack of evident signs of cardiac dysfunction. Considerable advancement in echocardiography, with particular attention to speckle tracking echocardiography, allows detecting discrete myocardial abnormalities and planning strategy for further clinical management before the occurrence of substantial heart damage. The review aims to present the current state of knowledge concerning cardiac involvement in HH. In addition, it could help cardiologists and other physicians in their everyday practice with HH patients.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection.

          Hepatitis B virus (HBV) infection remains a global public health problem with changing epidemiology due to several factors including vaccination policies and migration. This Clinical Practice Guideline presents updated recommendations for the optimal management of HBV infection. Chronic HBV infection can be classified into five phases: (I) HBeAg-positive chronic infection, (II) HBeAg-positive chronic hepatitis, (III) HBeAg-negative chronic infection, (IV) HBeAg-negative chronic hepatitis and (V) HBsAg-negative phase. All patients with chronic HBV infection are at increased risk of progression to cirrhosis and hepatocellular carcinoma (HCC), depending on host and viral factors. The main goal of therapy is to improve survival and quality of life by preventing disease progression, and consequently HCC development. The induction of long-term suppression of HBV replication represents the main endpoint of current treatment strategies, while HBsAg loss is an optimal endpoint. The typical indication for treatment requires HBV DNA >2,000IU/ml, elevated ALT and/or at least moderate histological lesions, while all cirrhotic patients with detectable HBV DNA should be treated. Additional indications include the prevention of mother to child transmission in pregnant women with high viremia and prevention of HBV reactivation in patients requiring immunosuppression or chemotherapy. The long-term administration of a potent nucleos(t)ide analogue with high barrier to resistance, i.e., entecavir, tenofovir disoproxil or tenofovir alafenamide, represents the treatment of choice. Pegylated interferon-alfa treatment can also be considered in mild to moderate chronic hepatitis B patients. Combination therapies are not generally recommended. All treated and untreated patients should be monitored for treatment response and adherence, and the risk of progression and development of complications. HCC remains the major concern for treated chronic hepatitis B patients. Several subgroups of patients with HBV infection require specific focus. Future treatment strategies to achieve 'cure' of disease and new biomarkers are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two to tango: regulation of Mammalian iron metabolism.

            Disruptions in iron homeostasis from both iron deficiency and overload account for some of the most common human diseases. Iron metabolism is balanced by two regulatory systems, one that functions systemically and relies on the hormone hepcidin and the iron exporter ferroportin, and another that predominantly controls cellular iron metabolism through iron-regulatory proteins that bind iron-responsive elements in regulated messenger RNAs. We describe how the two distinct systems function and how they "tango" together in a coordinated manner. We also highlight some of the current questions in mammalian iron metabolism and discuss therapeutic opportunities arising from a better understanding of the underlying biological principles. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ironing out Ferroportin.

              Maintaining physiologic iron concentrations in tissues is critical for metabolism and host defense. Iron absorption in the duodenum, recycling of iron from senescent erythrocytes, and iron mobilization from storage in macrophages and hepatocytes constitute the major iron flows into plasma for distribution to tissues, predominantly for erythropoiesis. All iron transfer to plasma occurs through the iron exporter ferroportin. The concentration of functional membrane-associated ferroportin is controlled by its ligand, the iron-regulatory hormone hepcidin, and fine-tuned by regulatory mechanisms serving iron homeostasis, oxygen utilization, host defense, and erythropoiesis. Fundamental questions about the structure and biology of ferroportin remain to be answered.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                16 July 2021
                July 2021
                : 11
                : 7
                : 1279
                Affiliations
                [1 ]Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland; michal_swiatczak@ 123456gumed.edu.pl
                [2 ]Department of Tropical Medicine and Epidemiology, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland; katarzyna.sikorska@ 123456gumed.edu.pl
                [3 ]Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Wólka Kosowska, 05-552 Jastrzębiec, Poland; r.starzynski@ 123456ighz.pl (R.R.S.); p.lipinski@ 123456igbzpan.pl (P.L.)
                [4 ]Clinical Psychology Department, Faculty of Health Sciences, Medical University of Gdańsk, 80-211 Gdańsk, Poland; alicja.raczak@ 123456gumed.edu.pl
                Author notes
                [* ]Correspondence: ludwik@ 123456gumed.edu.pl ; Tel.: +48-349-39-10
                Article
                diagnostics-11-01279
                10.3390/diagnostics11071279
                8304945
                34359361
                9d5b5a30-1540-4a01-a85b-1f465fca8028
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 17 June 2021
                : 12 July 2021
                Categories
                Review

                hereditary hemochromatosis,hfe gene,heart damage
                hereditary hemochromatosis, hfe gene, heart damage

                Comments

                Comment on this article