82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcutaneous immunotherapy via laser-generated micropores efficiently alleviates allergic asthma in Phl p 5–sensitized mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Specific immunotherapy via the subcutaneous or oral route is associated with local and, in some cases, systemic side effects and suffers from low patient compliance. Due to its unique immunological features, the skin represents a promising target tissue for effective and painless treatment of type I allergy. The current study was performed to compare the efficacy of transcutaneous immunotherapy via laser-generated micropores to subcutaneous injection.

          Methods

          BALB/c mice were sensitized by intraperitoneal injection of recombinant grass pollen allergen Phl p 5 together with alum. Subsequently, lung inflammation was induced by repeated intranasal challenge. During the treatment phase, adjuvant-free Phl p 5 was applied in solution to microporated skin or was subcutaneously injected. Lung function and cellular infiltration; Phl p 5–specific serum levels of IgG1, IgG2a, and IgE; and cytokine levels in bronchoalveolar lavage fluids as well as in supernatants of splenocyte cultures were assessed.

          Results

          Both therapeutic approaches reduced airway hyperresponsiveness and leukocyte infiltration into the lungs. Whereas subcutaneous immunotherapy induced a systemic increase in Th2-associated cytokine secretion, transcutaneous application revealed a general downregulation of Th1/Th2/Th17 responses. Successful therapy was associated with induction of IgG2a and an increase in FOXP3+ CD4+ T cells.

          Conclusions

          Transcutaneous immunotherapy via laser microporation is equally efficient compared with conventional subcutaneous treatment but avoids therapy-associated boosting of systemic Th2 immunity. Immunotherapy via laser-microporated skin combines a painless application route with the high efficacy known from subcutaneous injections and therefore represents a promising alternative to established forms of immunotherapy.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Taking dendritic cells into medicine.

          Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study.

            3-year subcutaneous specific immunotherapy (SIT) in children with seasonal allergic rhinoconjunctivitis reduced the risk of developing asthma during treatment and 2 years after discontinuation of SIT (5-year follow-up) indicating long-term preventive effect of SIT. We evaluated the long-term clinical effect and the preventive effect of developing asthma 7-years after termination of SIT. One hundred and forty-seven subjects, aged 16-25 years with grass and/or birch pollen allergy was investigated 10 years after initiation of a 3-year course of SIT with standardized allergen extracts of grass and/or birch or no SIT respectively. Conjunctival provocations were performed outside the season and methacholine bronchial provocations were performed during the season and winter. Asthma was assessed by clinical evaluation. The significant improvements in rhinoconjunctivitis and conjunctival sensitivity persisted at the 10-year follow-up. Significantly less actively treated subjects had developed asthma at 10-year follow-up as evaluated by clinical symptoms [odds ratio 2.5 (1.1-5.9)]. Patients who developed asthma among controls were 24/53 and in the SIT group 16/64. The longitudinal treatment effect when adjusted for bronchial hyper-responsiveness and asthma status at baseline including all observations at 3, 5 and 10 years follow-up (children with or without asthma at baseline, n = 189; 511 observations) was statistically significant (P = 0.0075). The odds ratio for no-asthma was 4.6 95% CI (1.5-13.7) in favor of SIT. A 3-year course of SIT with standardized allergen extracts has shown long-term clinical effects and the potential of preventing development of asthma in children with allergic rhinoconjunctivitis up to 7 years after treatment. Specific immunotherapy has long-term clinical effects and the potential of preventing development of asthma in children with allergic rhino conjunctivitis up to 7 years after treatment termination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune surveillance in the skin: mechanisms and clinical consequences

              Key Points The skin, together with other epithelial-cell interfaces with a hostile environment, supports a range of passive and active immune defence mechanisms. Cutaneous immune responses serve as a model for the study of interactions between innate and acquired immune mechanisms. Adaptive immune surveillance addresses the logistical challenge of targeting naive, effector and memory T cells to their respective sites of function by using distinct homing mechanisms at different stages of the immune response, termed primary, secondary and tertiary immune surveillance. Primary immune surveillance involves the process by which tissue dendritic cells are induced to engulf foreign particles, undergo maturation and emigrate through the afferent lymphatics to the local draining lymph node, where they encounter naive T cells recruited from the peripheral circulation. This greatly increases the efficiency with which naive T cells are exposed to antigens presented by professional antigen-presenting cells. Secondary immune surveillance involves the production and distribution of antigen-specific effector memory T cells that express homing receptors that direct their migration back to the tissue draining the lymph node where activation occurred and their participation in tissue-based immune responses. The persistence of memory T cells with both antigen and tissue specificity also protects against possible future encounters with the same pathogen, by providing a population of antigen-specific effector cells pre-targeted to the site where exposure to that pathogen might most probably recur. Tertiary immune surveillance involves the production of central memory and effector cells potentially directed to lymph nodes and tissues other than the site of primary exposure, providing broad coverage in the event that the pathogen is encountered through a different route. These concepts have implications for the understanding of both inflammatory skin disorders and the development of antitumour and antipathogen vaccine strategies.
                Bookmark

                Author and article information

                Journal
                Allergy
                Allergy
                all
                Allergy
                Blackwell Publishing Ltd (Oxford, UK )
                0105-4538
                1398-9995
                November 2012
                05 September 2012
                : 67
                : 11
                : 1365-1374
                Affiliations
                [1 ]Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg Salzburg, Austria
                [2 ]Division of Light & Electron Microscopy, Department of Organismic Biology, University of Salzburg Salzburg, Austria
                [3 ]Department of Pathology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Austria
                [4 ]Pantec Biosolutions AG Ruggell, Liechtenstein
                Author notes
                Correspondence Josef Thalhamer, PhD, Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria. Tel.: +43 662 8044 5737 Fax: +43 662 8044 5751 E-mail: josef.thalhamer@ 123456sbg.ac.at
                [*]

                These authors contributed equally.

                Article
                10.1111/all.12005
                3532610
                22947064
                9d53e3fb-6429-4a0e-90c4-def7cf5ba37f
                Copyright © 2012 John Wiley & Sons A/S

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 14 July 2012
                Categories
                Original Articles

                Immunology
                allergy,laser,transcutaneous,immunotherapy,micropores
                Immunology
                allergy, laser, transcutaneous, immunotherapy, micropores

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content212

                Cited by8

                Most referenced authors684