11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.

          Related collections

          Most cited references221

          • Record: found
          • Abstract: found
          • Article: not found

          HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.

          HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs.

            ATF6 is a membrane-bound transcription factor that activates genes in the endoplasmic reticulum (ER) stress response. When unfolded proteins accumulate in the ER, ATF6 is cleaved to release its cytoplasmic domain, which enters the nucleus. Here, we show that ATF6 is processed by Site-1 protease (S1P) and Site-2 protease (S2P), the enzymes that process SREBPs in response to cholesterol deprivation. ATF6 processing was blocked completely in cells lacking S2P and partially in cells lacking S1P. ATF6 processing required the RxxL and asparagine/proline motifs, known requirements for S1P and S2P processing, respectively. Cells lacking S2P failed to induce GRP78, an ATF6 target, in response to ER stress. ATF6 processing did not require SCAP, which is essential for SREBP processing. We conclude that S1P and S2P are required for the ER stress response as well as for lipid synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.

              We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis.
                Bookmark

                Author and article information

                Contributors
                sylwiabart@gumed.edu.pl
                jcollawn@uab.edu
                Journal
                Cell Mol Biol Lett
                Cell. Mol. Biol. Lett
                Cellular & Molecular Biology Letters
                BioMed Central (London )
                1425-8153
                1689-1392
                13 March 2020
                13 March 2020
                2020
                : 25
                : 18
                Affiliations
                [1 ]GRID grid.11451.30, ISNI 0000 0001 0531 3426, Department of Inorganic Chemistry, , Medical University of Gdansk, ; Gdansk, Poland
                [2 ]GRID grid.265892.2, ISNI 0000000106344187, Department of Cell, Developmental and Integrative Biology, , University of Alabama at Birmingham, ; Birmingham, USA
                Article
                212
                10.1186/s11658-020-00212-1
                7071609
                32190062
                9d49e1ca-eed4-4434-ac19-53236df72951
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 November 2019
                : 26 February 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: UMO-2015/17/B/NZ3/01485
                Award ID: 2015/18/E/NZ3/00687
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000897, Cystic Fibrosis Foundation;
                Award ID: ROWE15R0
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: P30 DK072482
                Categories
                Invited Review
                Custom metadata
                © The Author(s) 2020

                er-stress,angiogenesis,hypoxia-reoxygenation injury,ischemia,cell fate determination,uprmt

                Comments

                Comment on this article