12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kaposi’s sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment

      research-article
      , , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5ʹ RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment.

          Author summary

          Eukaryotic cells contain numerous nuclear RNA quality control (QC) systems that ensure transcriptome fidelity by detecting and degrading aberrant RNAs. Some viral RNAs are also predicted to be degraded by these RNA QC systems, so viruses have evolved mechanisms that counter host RNA QC pathways. Previous studies showed that the Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses the ORF57 protein to protect its RNAs from nuclear decay. However, neither the specific host pathways that degrade KSHV RNAs nor the mechanisms describing ORF57 protection of viral RNAs were known. Our data suggest that ORF57 protects viral RNAs from two different nuclear RNA QC pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) and an ARS2-mediated RNA decay pathway. Mechanistically, we show that ORF57 binds directly to viral RNAs and prevents the recruitment of hMTR4, a cellular factor whose function is to recruit the exosome, the complex responsible for RNA decay, to the transcript. We conclude that by preventing hMTR4 recruitment, ORF57 protects viral RNAs from degradation resulting in robust expression of viral genes.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          From birth to death: the complex lives of eukaryotic mRNAs.

          Recent work indicates that the posttranscriptional control of eukaryotic gene expression is much more elaborate and extensive than previously thought, with essentially every step of messenger RNA (mRNA) metabolism being subject to regulation in an mRNA-specific manner. Thus, a comprehensive understanding of eukaryotic gene expression requires an appreciation for how the lives of mRNAs are influenced by a wide array of diverse regulatory mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA exosome depletion reveals transcription upstream of active human promoters.

            Studies have shown that the bulk of eukaryotic genomes is transcribed. Transcriptome maps are frequently updated, but low-abundant transcripts have probably gone unnoticed. To eliminate RNA degradation, we depleted the exonucleolytic RNA exosome from human cells and then subjected the RNA to tiling microarray analysis. This revealed a class of short, polyadenylated and highly unstable RNAs. These promoter upstream transcripts (PROMPTs) are produced approximately 0.5 to 2.5 kilobases upstream of active transcription start sites. PROMPT transcription occurs in both sense and antisense directions with respect to the downstream gene. In addition, it requires the presence of the gene promoter and is positively correlated with gene activity. We propose that PROMPT transcription is a common characteristic of RNA polymerase II (RNAPII) transcribed genes with a possible regulatory potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic sequencing.

              Unique DNA sequences can be determined directly from mouse genomic DNA. A denaturing gel separates by size mixtures of unlabeled DNA fragments from complete restriction and partial chemical cleavages of the entire genome. These lanes of DNA are transferred and UV-crosslinked to nylon membranes. Hybridization with a short 32P-labeled single-stranded probe produces the image of a DNA sequence "ladder" extending from the 3' or 5' end of one restriction site in the genome. Numerous different sequences can be obtained from a single membrane by reprobing. Each band in these sequences represents 3 fg of DNA complementary to the probe. Sequence data from mouse immunoglobulin heavy chain genes from several cell types are presented. The genomic sequencing procedures are applicable to the analysis of genetic polymorphisms, DNA methylation at deoxycytidines, and nucleic acid-protein interactions at single nucleotide resolution.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: Methodology
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                20 February 2019
                February 2019
                : 15
                : 2
                : e1007596
                Affiliations
                [001]Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
                University of Utah, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-8562-0895
                Article
                PPATHOGENS-D-18-02424
                10.1371/journal.ppat.1007596
                6398867
                30785952
                9d4987da-452b-4426-a1ee-639232ee415f
                © 2019 Ruiz et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 December 2018
                : 25 January 2019
                Page count
                Figures: 7, Tables: 0, Pages: 30
                Funding
                This work was funded by NIH/NIAID R01 AI123165 (to N.K.C.) and by the Welch Foundation I-1915-20170325 (to N.K.C). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small interfering RNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small interfering RNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Messenger RNA
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small nuclear RNA
                Small nucleolar RNA
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small nucleolar RNA
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and life sciences
                Organisms
                Viruses
                DNA viruses
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Herpesviruses
                Kaposi's Sarcoma-Associated Herpesvirus
                Research and analysis methods
                Extraction techniques
                RNA extraction
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Vesicles
                Exosomes
                Research and Analysis Methods
                Precipitation Techniques
                Organic Solvent Precipitation
                Ethanol Precipitation
                Custom metadata
                vor-update-to-uncorrected-proof
                2019-03-04
                All relevant data are within the manuscript and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article