98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Malaria parasite plasmepsins: More than just plain old degradative pepsins

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium . Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some ( e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: not found

          MUSCLE: multiple sequence alignment with high accuracy and high throughput.

          We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interactive Tree Of Life (iTOL) v4: recent updates and new developments

            Abstract The Interactive Tree Of Life (https://itol.embl.de) is an online tool for the display, manipulation and annotation of phylogenetic and other trees. It is freely available and open to everyone. The current version introduces four new dataset types, together with numerous new features. Annotation options have been expanded and new control options added for many display elements. An interactive spreadsheet-like editor has been implemented, providing dataset creation and editing directly in the web interface. Font support has been rewritten with full support for UTF-8 character encoding throughout the user interface. Google Web Fonts are now fully supported in the tree text labels. iTOL v4 is the first tool which supports direct visualization of Qiime 2 trees and associated annotations. The user account system has been streamlined and expanded with new navigation options, and currently handles >700 000 trees from more than 40 000 individual users. Full batch access has been implemented allowing programmatic upload and export of trees and annotations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uncovering the essential genes of the human malaria parasitePlasmodium falciparumby saturation mutagenesis

              Severe malaria is caused by the apicomplexan parasite Plasmodium falciparum. Despite decades of research the unique biology of these parasites has made it challenging to establish high throughput genetic approaches for identification of therapeutic targets. Using transposon mutagenesis of P. falciparum in an approach that exploited its AT-rich genome we generated >38,000 mutants, saturating the genome and defining fitness costs for 95% of genes. Of 5,399 genes we found ~3,000 genes are essential for optimal growth of asexual blood-stages in vitro . Our study defines ∼1000 essential genes, including genes associated with drug resistance, vaccine candidates, and conserved proteins of unknown function. We validated this approach by testing proteasome pathways for individual mutants associated with artemisinin sensitivity. Transposon mutagenesis of Plasmodium falciparum was used to generate >38,000 mutants, saturating the genome and defining fitness costs for 95% of genes. We functionally define the relative fitness cost of disruption for 5,399 genes, and find that ~3,000 genes, ~62% of the genome, are essential for optimal asexual blood-stage in vitro growth. Our study defines ∼1000 essential genes, including genes associated with drug resistance, leading vaccine candidates, and hundreds of Plasmodium- conserved proteins of unknown function that are now potential therapeutic intervention targets. We experimentally validated the essentiality of proteasome pathways with drug studies of individual mutants associated with artemisinin sensitivity. This study defines high-priority targets and pathways and points the way for the future of P. falciparum high throughput genetics. Saturation-scale mutagenesis of Plasmodium falciparum reveals a core set of genes essential for asexual blood-stage growth in vitro . INTRODUCTION: Malaria remains a devastating global parasitic disease, with the majority of malaria deaths caused by the highly virulent Plasmodium falciparum . The extreme AT-bias of the P. falciparum genome has hampered genetic studies through targeted approaches such as homologous recombination or CRISPR-Cas9, and only a few hundred P. falciparum mutants have been experimentally generated in the past decades. In this study, we have used high throughput piggyBac transposon insertional mutagenesis and Quantitative Insertion Site Sequencing (QIseq) to reach saturation-level mutagenesis of this parasite. RATIONALE: Our study exploits the AT-richness of P. falciparum genome, which provides numerous piggyBac transposon insertion targets within both gene coding and non-coding flanking sequences, to generate over 38,000 P. falciparum mutants. At this level of mutagenesis, we could distinguish essential genes as non-mutable and dispensable genes as mutable. Subsequently, we identified 3,357 genes essential for in vitro asexual blood-stage growth. RESULTS: We calculated Mutagenesis Index Scores (MIS) and Mutagenesis Fitness Scores (MFS) to functionally define the relative fitness cost of disruption for 5,399 genes. A competitive growth phenotype screen confirmed that MIS and MFS were predictive of the fitness cost for in vitro asexual growth. Genes predicted to be essential included genes implicated in drug resistance, such as the “ K13 ” Kelch propeller, mdr and dhfr-ts , as well as targets considered to be high-value for drugs development such as pkg , and cdpk5 . The screen revealed essential genes that are specific to human Plasmodium parasites but absent from rodent-infective species, such as lipid metabolic genes that may be crucial to transmission commitment in human infections. MIS and MFS profiling provides a clear ranking of the relative essentiality of gene ontology (GO) functions in P. falciparum . GO pathways associated with translation, RNA metabolism, and cell cycle control are more essential, whereas genes associated with protein phosphorylation, virulence factors, and transcription are more likely to be dispensable. Finally, we confirm that the proteasome-degradation pathway is a high-value druggable target based on its high ratio of essential:dispensable genes, and by functionally confirming its link to the mode of action of artemisinin, the current front-line antimalarial. CONCLUSION: Saturation-scale mutagenesis allows prioritization of intervention targets in the genome of the most important cause of malaria. The identification of the essential genome, consisting of over 3000 genes, will be valuable for antimalarial therapeutic research.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Biological Chemistry
                Journal of Biological Chemistry
                American Society for Biochemistry & Molecular Biology (ASBMB)
                00219258
                June 2020
                June 2020
                : 295
                : 25
                : 8425-8441
                Article
                10.1074/jbc.REV120.009309
                7307202
                32366462
                9cf2aeee-aeb1-45d6-b670-4dbb989d52fd
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article