Recent advances in wearable energy harvesting technology as solutions to occupational health and safety programs are presented. Workers are often exposed to harmful conditions—especially in the mining and construction industries—where chronic health issues can emerge over time. While wearable sensors technology can aid in early detection and long‐term exposure tracking, powering them and the associated risks are often an impediment for their widespread use, such as the need for frequent charging and battery safety. Repetitive vibration exposure is one such hazard, e.g., whole body vibration, yet it can also provide parasitic energy that can be harvested to power wearable sensors and overcome the battery limitations. This review can critically analyze the vibration effect on workers’ health, the limitations of currently available devices, explore new options for powering different personal protective equipment devices, and discuss opportunities and directions for future research. The recent progress in self‐powered vibration sensors and systems from the perspective of the underlying materials, applications, and fabrication techniques is reviewed. Lastly, the challenges and perspectives are discussed for reference to the researchers who are interested in self‐powered vibration sensors.
Self‐powered piezoelectric sensors are a promising technology to be incorporated into personal protective equipment devices to measure exposure to whole‐body vibration, including hand‐arm vibration syndrome and low back pain. The piezoelectric sensors can help to reduce the risk of these types of injuries and improve the overall health and safety of workers in the mining industry.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.