40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soft Robotic Grippers for Biological Sampling on Deep Reefs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fertile fathoms: Deep reproductive refugia for threatened shallow corals

          The persistence of natural metapopulations may depend on subpopulations that exist at the edges of species ranges, removed from anthropogenic stress. Mesophotic coral ecosystems (30–150 m) are buffered from disturbance by depth and distance, and are potentially massive reservoirs of coral diversity and fecundity; yet we know little about the reproductive capabilities of their constituent species and the potential for these marginal environments to influence patterns of coral reef persistence. We investigated the reproductive performance of the threatened depth-generalist coral Orbicella faveolata over the extent of its vertical range to assess mesophotic contributions to regional larval pools. Over equal habitat area, mesophotic coral populations were found to produce over an order of magnitude more eggs than nearby shallow populations. Positive changes with depth in both population abundance and polyp fecundity contributed to this discrepancy. Relative larval pool contributions of deeper living corals will likely increase as shallow habitats further degrade due to climate change and local habitat degradation. This is a compelling example of the potential for marginal habitat to be critical to metapopulation persistence as reproductive refugia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Seasonal Mesophotic Coral Bleaching of Stylophora pistillata in the Northern Red Sea

            Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40–63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98–92.19 µmol O2 cm−2 day−1. However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between −12.86 - (−10.24) µmol O2 cm−2 day−1. But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between −2.83–0.76 µmol O2 cm−2 day−1. This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transcriptome sequencing and annotation of the polychaete Hermodice carunculata (Annelida, Amphinomidae)

              Background The amphinomid polychaete Hermodice carunculata is a cosmopolitan and ecologically important omnivore in coral reef ecosystems, preying on a diverse suite of reef organisms and potentially acting as a vector for coral disease. While amphinomids are a key group for determining the root of the Annelida, their phylogenetic position has been difficult to resolve, and their publically available genomic data was scarce. Results We performed deep transcriptome sequencing (Illumina HiSeq) and profiling on Hermodice carunculata collected in the Western Atlantic Ocean. We focused this study on 58,454 predicted Open Reading Frames (ORFs) of genes longer than 200 amino acids for our homology search, and Gene Ontology (GO) terms and InterPro IDs were assigned to 32,500 of these ORFs. We used this de novo assembled transcriptome to recover major signaling pathways and housekeeping genes. We also identify a suite of H. carunculata genes related to reproduction and immune response. Conclusions We provide a comprehensive catalogue of annotated genes for Hermodice carunculata and expand the knowledge of reproduction and immune response genes in annelids, in general. Overall, this study vastly expands the available genomic data for H. carunculata, of which previously consisted of only 279 nucleotide sequences in NCBI. This underscores the utility of Illumina sequencing for de novo transcriptome assembly in non-model organisms as a cost-effective and efficient tool for gene discovery and downstream applications, such as phylogenetic analysis and gene expression profiling. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1565-6) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Soft Robot
                Soft Robot
                soro
                Soft Robotics
                Mary Ann Liebert, Inc. (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                2169-5172
                2169-5180
                01 March 2016
                01 March 2016
                : 3
                : 1
                : 23-33
                Affiliations
                [ 1 ]Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts.
                [ 2 ]Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts.
                [ 3 ]Department of Ocean Engineering, University of Rhode Island , Narragansett, Rhode Island.
                [ 4 ]Leon Charney School of Marine Sciences, Haifa University , Haifa, Israel.
                [ 5 ]Department of Natural Sciences, Baruch College, City University of New York , New York, New York.
                [ 6 ]American Museum of Natural History, Sackler Institute of Comparative Genomics , New York, New York.
                Author notes
                Address correspondence to: Robert J. Wood, Charles River Professor of Engineering and Applied Sciences, Harvard John A. Paulson School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, 33 Oxford Street, Cambridge, MA 02138, E-mail: rjwood@ 123456seas.harvard.edu
                Article
                10.1089/soro.2015.0019
                10.1089/soro.2015.0019
                4997628
                27625917
                9c6e9396-4940-4ddb-b2a2-750d09940a3b
                © Kevin C. Galloway, et al. 2016; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                Page count
                Figures: 17, References: 30, Pages: 11
                Categories
                Original Articles

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content313

                Cited by181

                Most referenced authors32