77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acceleration of tooth movement during orthodontic treatment - a frontier in Orthodontics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays, there is an increased tendency for researches to focus on accelerating methods for tooth movement due to the huge demand for adults for a shorter orthodontic treatment time. Unfortunately, long orthodontic treatment time poses several disadvantages like higher predisposition to caries, gingival recession, and root resorption. This increases the demand to find the best method to increase tooth movement with the least possible disadvantages. The purpose of this study is to view the successful approaches in tooth movement and to highlight the newest technique in tooth movement. A total of 74 articles were reviewed in tooth movement and related discipline from 1959 to 2013. There is a high amount of researches done on the biological method for tooth movement; unfortunately, the majority of them were done on animals. Cytokine, PTH, vitamin D, and RANKL/RANK/OPG show promising results; on the other hand, relaxin does not accelerate tooth movement, but increases the tooth mobility. Low-level laser therapy has shown positive outcome, but further investigation should be done for the best energy and duration to achieve the highest success rate. Surgical approach has the most predictable outcomes but with limited application due to its aggressiveness. Piezocision technique is considered one of the best surgical approaches because it poses good periodontal tissue response and excellent aesthetic outcome. Due to the advantages and disadvantages of each approach, further investigations should be done to determine the best method to accelerate tooth movement.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular, molecular, and tissue-level reactions to orthodontic force.

          Remodeling changes in paradental tissues are considered essential in effecting orthodontic tooth movement. The force-induced tissue strain produces local alterations in vascularity, as well as cellular and extracellular matrix reorganization, leading to the synthesis and release of various neurotransmitters, cytokines, growth factors, colony-stimulating factors, and metabolites of arachidonic acid. Recent research in the biological basis of tooth movement has provided detailed insight into molecular, cellular, and tissue-level reactions to orthodontic forces. Although many studies have been reported in the orthodontic and related scientific literature, a concise convergence of all data is still lacking. Such an amalgamation of the rapidly accumulating scientific information should help orthodontic clinicians and educators understand the biological processes that underlie the phenomenon of tooth movement with mechanics (removable, fixed, or functional appliances). This review aims to achieve this goal and is organized to include all major findings from the beginning of research in the biology of tooth movement. It highlights recent developments in cellular, molecular, tissue, and genetic reactions in response to orthodontic force application. It reviews briefly the processes of bone, periodontal ligament, and gingival remodeling in response to orthodontic force. This review also provides insight into the biological background of various deleterious effects of orthodontic forces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt.

            The first experimental investigation of orthodontic tooth movement was published by Sandstedt in 1904-1905. After 100 years, there is a good understanding of the sequence of events at both tissue and cellular levels and now the current focus of research is at the molecular level. The techniques of reverse transcription-polymerase chain reaction and in situ hybridization to detect mRNAs of interest have revolutionized tooth movement studies and an expanding list of antibodies and enzyme-linked immunosorbent assays directed against human and animal proteins will facilitate their identification in tissue sections and/or culture supernatants. Nevertheless, although this technology has greatly simplified research for the clinical and laboratory investigator, message is not always translated into protein, and the presence of a protein does not necessarily mean it is biologically active. In vivo and in vitro methods have been widely used in tooth movement studies. However, data from in vitro models, in which the mechanical stimulus can be carefully controlled (tension versus compression; intermittent versus continuous), should be correlated with in vivo data from animal models. The current evidence suggests that downstream from the initial mechanotransduction event at focal adhesions which link the extracellular matrix to the cytoskeleton, mechanically induced remodelling is mediated by a complex feedback mechanism involving the synthesis of cytokines such as interleukin-1 (IL-1), IL-6, and receptor activator of nuclear factor k B ligand by cells of the osteoblast and/or fibroblast lineages. These in turn act in an autocrine/paracrine fashion to regulate the expression of transcription factors, cytokines, growth factors, enzymes, and structural molecules involved in the differentiation, proliferation, and function of mesenchymal and other cell types. Contrary to the impression gained from the literature, tooth movement is not confined to events within the periodontal ligament. Orthodontic tooth movement involves two interrelated processes: (1) deflection or bending of the alveolar bone and (2) remodelling of the periodontal tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial signaling in mammalian cells activated by red and near-IR radiation.

              Tiina Karu (2008)
              Mitochondrial signaling is an information channel between the mitochondrial respiratory chain and the nucleus for the transduction signals regarding the functional state of the mitochondria. The present review examines the question whether radiation of visible and near-IR (IR-A) radiation can activate this retrograde-type cellular signaling pathway. Experimental data about modulation of elements of mitochondrial retrograde signaling by the irradiation (mitochondrial membrane potential DeltaPsi(m), reactive oxygen species ROS, Ca(2+), NO, pH(i), fission-fusion homeostasis of mitochondria) are reviewed. The terminal enzyme of the mitochondrial respiratory chain cytochrome c oxidase is considered as the photoacceptor. Functions of cytochrome c oxidase as a signal generator as well as a signal transducer in irradiated cells are outlined.
                Bookmark

                Author and article information

                Contributors
                gnimeri@uab.edu
                ckau@uab.edu
                nadiaak@uab.edu
                rvcorona@uab.edu
                Journal
                Prog Orthod
                Prog Orthod
                Progress in Orthodontics
                Springer-Verlag (Berlin/Heidelberg )
                1723-7785
                2196-1042
                29 October 2013
                2013
                : 14
                : 42
                Affiliations
                Department of Orthodontics, University of Alabama, 305 School of Dentistry Building, 1919 7th Avenue south, Birmingham, AL 35294-0007 USA
                Article
                46
                10.1186/2196-1042-14-42
                4384959
                24326040
                9c514929-0c3b-470f-87c9-da6b733d271f
                © Nimeri et al.; licensee Springer. 2013

                This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 June 2013
                : 26 September 2013
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd 2013

                accelerating tooth movement,biology,photobiomodulation

                Comments

                Comment on this article