62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetes has become a serious health problem and a major risk factor associated with troublesome health complications, such as metabolism disorders and liver-kidney dysfunctions. The inadequacies associated with conventional medicines have led to a determined search for alternative natural therapeutic agents. The present study aimed to investigate and compare the hypoglycemic and antilipidemic effects of kombucha and black tea, two natural drinks commonly consumed around the world, in surviving diabetic rats.

          Methods

          Alloxan diabetic rats were orally supplied with kombucha and black tea at a dose of 5 mL/kg body weight per day for 30 days, fasted overnight, and sacrificed on the 31st day of the experiment. Their bloods were collected and submitted to various biochemical measurements, including blood glucose, cholesterol, triglcerides, urea, creatinine, transaminases, transpeptidase, lipase, and amylase activities. Their pancreases were isolated and processed to measure lipase and α-amylase activities and to perform histological analysis.

          Results

          The findings revealed that, compared to black tea, kombucha tea was a better inhibitor of α-amylase and lipase activities in the plasma and pancreas and a better suppressor of increased blood glucose levels. Interestingly, kombucha was noted to induce a marked delay in the absorption of LDL-cholesterol and triglycerides and a significant increase in HDL-cholesterol. Histological analyses also showed that it exerted an ameliorative action on the pancreases and efficiently protected the liver-kidney functions of diabetic rats, evidenced by significant decreases in aspartate transaminase, alanine transaminase, and gamma-glytamyl transpeptidase activities in the plasma, as well as in the creatinine and urea contents.

          Conclusions

          The findings revealed that kombucha tea administration induced attractive curative effects on diabetic rats, particularly in terms of liver-kidney functions. Kombucha tea can, therefore, be considered as a potential strong candidate for future application as a functional supplement for the treatment and prevention of diabetes.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas.

          The aim of the present study was the evaluation of possible protective effects of quercetin (QE) against beta-cell damage in experimental streptozotocin (STZ)-induced diabetes in rats. STZ was injected intraperitoneally at a single dose of 50 mg kg(-1) for diabetes induction. QE (15 mg kg(-1) day, intraperitoneal (i.p.) injection) was injected for 3 days prior to STZ administration; these injections were continued to the end of the study (for 4 weeks). It has been believed that oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). In order to determine the changes of cellular antioxidant defense system, antioxidant enzymes such as glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were measured in pancreatic homogenates. Moreover we also measured serum nitric oxide (NO) and erythrocyte and pancreatic tissue malondialdehyde (MDA) levels, a marker of lipid peroxidation, if there is an imbalance between oxidant and antioxidant status. Pancreatic beta-cells were examined by immunohistochemical methods. STZ induced a significant increase lipid peroxidation, serum NO concentrations and decreased the antioxidant enzyme activity. Erythrocyte MDA, serum NO and pancreatic tissue MDA significantly increased (P < 0.05) and also the antioxidant levels significantly decreased (P < 0.05) in diabetic group. QE treatment significantly decreased the elevated MDA and NO (P < 0.05), and also increased the antioxidant enzyme activities (P < 0.05). QE treatment has shown protective effect possibly through decreasing lipid peroxidation, NO production and increasing antioxidant enzyme activity. Islet cells degeneration and weak insulin immunohistochemical staining was observed in STZ induced diabetic rats. Increased staining of insulin and preservation of islet cells were apparent in the QE-treated diabetic rats. These findings suggest that QE treatment has protective effect in diabetes by decreasing oxidative stress and preservation of pancreatic beta-cell integrity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice.

            The anti-diabetic effect of Cinnamomi cassiae extract (Cinnamon bark: Lauraceae) in a type II diabetic animal model (C57BIKsj db/db) was studied. Cinnamon extract was administered at different dosages (50, 100, 150 and 200 mg/kg) for 6 weeks. It was found that blood glucose concentration is significantly decreased in a dose-dependent manner (P<0.001) with the most in the 200 mg/kg group compared with the control. In addition, serum insulin levels and HDL-cholesterol levels were significantly higher (P<0.01) and the concentration of triglyceride, total cholesterol and intestinal alpha-glycosidase activity were significantly lower after 6 weeks of the administration. These results suggest that cinnamon extract has a regulatory role in blood glucose level and lipids and it may also exert a blood glucose-suppressing effect by improving insulin sensitivity or slowing absorption of carbohydrates in the small intestine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.

              Fifty-four polyphenols isolated from tea leaves were evaluated for their inhibitory activities against pancreatic lipase, the key enzyme of lipid absorption in the gut. (-)-Epigallocatechin 3-O-gallate (EGCG), which is one of major polyphenols in green tea, showed lipase inhibition with an IC50 of 0.349 microM. Moreover, flavan-3-ol digallate esters, such as (-)-epigallocatechin-3,5-digallate, showed higher activities of inhibition on lipase with an IC50 of 0.098 microM. On the other hand, nonesterified flavan-3-ols, such as (+)-catechin, (-)-epicatechin, (+)-gallocatechin, and (-)-epigallocatechin, showed zero and/or the lowest activities against pancreatic lipase (IC50 > 20 microM). These data suggested that the presence of galloyl moieties within the structure was required for enhancement of pancreatic lipase inhibition. It is well-known that flavan-3-ols are polymerized by polyphenol oxidase and/or heating in a manufacturing process of oolong tea. Oolonghomobisflavans A and B and oolongtheanin 3'-O-gallate, which are typical in oolong tea leaves, showed strong inhibitory activities with IC50 values of 0.048, 0.108, and 0.068 microM, respectively, even higher than that of EGCG. The oolong tea polymerized polyphenols (OTPP) were prepared for the assay from oolong tea extract, from which the preparation effectively subtracted the zero and/or less-active monomeric flavan-3-ols by preparative high-performance liquid chromatography. The weight-average molecular weight (Mw) and number-average molecular-weight (Mn) values of OTPP were 2017 and 903, respectively, by using gel permeation choromatography. OTPP showed a 5-fold stronger inhibition against pancreatic lipase (IC50 = 0.28 microg/mL) by comparison with that of the tannase-treated OTPP (IC50 = 1.38 microg/mL). These data suggested that the presence of galloyl moieties within their chemical structures and/or the polymerization of flavan-3-ols were required for enhancement of pancreatic lipase inhibition.
                Bookmark

                Author and article information

                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2012
                16 May 2012
                : 12
                : 63
                Affiliations
                [1 ]Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, 3038, Tunisia
                [2 ]Biotechnology High School of Sfax, University of Sfax, Sfax, 3052, Tunisia
                [3 ]Research Unit Management of Coastal and Urban environments, National School of Engineers of Sfax, University of Sfax, Sfax, 3038, Tunisia
                [4 ]Research Unit Molecular Bases of Human Diseases, Sfax College of Medicine, University of Sfax, Sfax, 3000, Tunisia
                [5 ]Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, University of Sfax, Sfax, 3018, Tunisia
                Article
                1472-6882-12-63
                10.1186/1472-6882-12-63
                3403982
                22591682
                9c3abf33-57db-47d9-bf69-63fe7e844b25
                Copyright ©2012 Aloulou et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 October 2011
                : 16 May 2012
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article