8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep phenotyping: deep learning for temporal phenotype/genotype classification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          High resolution and high throughput genotype to phenotype studies in plants are underway to accelerate breeding of climate ready crops. In the recent years, deep learning techniques and in particular Convolutional Neural Networks (CNNs), Recurrent Neural Networks and Long-Short Term Memories (LSTMs), have shown great success in visual data recognition, classification, and sequence learning tasks. More recently, CNNs have been used for plant classification and phenotyping, using individual static images of the plants. On the other hand, dynamic behavior of the plants as well as their growth has been an important phenotype for plant biologists, and this motivated us to study the potential of LSTMs in encoding these temporal information for the accession classification task, which is useful in automation of plant production and care.

          Methods

          In this paper, we propose a CNN-LSTM framework for plant classification of various genotypes. Here, we exploit the power of deep CNNs for automatic joint feature and classifier learning, compared to using hand-crafted features. In addition, we leverage the potential of LSTMs to study the growth of the plants and their dynamic behaviors as important discriminative phenotypes for accession classification. Moreover, we collected a dataset of time-series image sequences of four accessions of Arabidopsis, captured in similar imaging conditions, which could be used as a standard benchmark by researchers in the field. We made this dataset publicly available.

          Conclusion

          The results provide evidence of the benefits of our accession classification approach over using traditional hand-crafted image analysis features and other accession classification frameworks. We also demonstrate that utilizing temporal information using LSTMs can further improve the performance of the system. The proposed framework can be used in other applications such as in plant classification given the environment conditions or in distinguishing diseased plants from healthy ones.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Using Deep Learning for Image-Based Plant Disease Detection

          Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, we train a deep convolutional neural network to identify 14 crop species and 26 diseases (or absence thereof). The trained model achieves an accuracy of 99.35% on a held-out test set, demonstrating the feasibility of this approach. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a massive global scale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Machine Learning for High-Throughput Stress Phenotyping in Plants.

            Advances in automated and high-throughput imaging technologies have resulted in a deluge of high-resolution images and sensor data of plants. However, extracting patterns and features from this large corpus of data requires the use of machine learning (ML) tools to enable data assimilation and feature identification for stress phenotyping. Four stages of the decision cycle in plant stress phenotyping and plant breeding activities where different ML approaches can be deployed are (i) identification, (ii) classification, (iii) quantification, and (iv) prediction (ICQP). We provide here a comprehensive overview and user-friendly taxonomy of ML tools to enable the plant community to correctly and easily apply the appropriate ML tools and best-practice guidelines for various biotic and abiotic stress traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis.

              Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. © 2014 American Society of Plant Biologists. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                sarah.taghavi-namin@anu.edu.au
                mohammad.esmaeilzadeh@anu.edu.au
                mohammad.najafi@anu.edu.au
                tim.brown@anu.edu.au
                justin.borevitz@anu.edu.au
                Journal
                Plant Methods
                Plant Methods
                Plant Methods
                BioMed Central (London )
                1746-4811
                4 August 2018
                4 August 2018
                2018
                : 14
                : 66
                Affiliations
                [1 ]ISNI 0000 0001 2180 7477, GRID grid.1001.0, Research School of Biology, , Australian National University, ; Canberra, Australia
                [2 ]ISNI 0000 0001 2180 7477, GRID grid.1001.0, Research School of Engineering and Computer Science, , Australian National University, ; Canberra, Australia
                Author information
                http://orcid.org/0000-0003-4634-4055
                Article
                333
                10.1186/s13007-018-0333-4
                6076396
                29321806
                9c1d62b1-b9cc-4f84-ba4f-cce244b4509b
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 31 July 2017
                : 24 July 2018
                Funding
                Funded by: Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology
                Award ID: CE140100008
                Award Recipient :
                Funded by: ARC Linkage Grant
                Award ID: LP140100572
                Award Recipient :
                Funded by: National Collaborative Research Infrastructure Scheme - Australian Plant Phenomics Facility
                Categories
                Methodology
                Custom metadata
                © The Author(s) 2018

                Plant science & Botany
                deep learning,temporal information,deep features,accession classification

                Comments

                Comment on this article