0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          How useful is SBF in predicting in vivo bone bioactivity?

          The bone-bonding ability of a material is often evaluated by examining the ability of apatite to form on its surface in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. However, the validity of this method for evaluating bone-bonding ability has not been assessed systematically. Here, the history of SBF, correlation of the ability of apatite to form on various materials in SBF with their in vivo bone bioactivities, and some examples of the development of novel bioactive materials based on apatite formation in SBF are reviewed. It was concluded that examination of apatite formation on a material in SBF is useful for predicting the in vivo bone bioactivity of a material, and the number of animals used in and the duration of animal experiments can be reduced remarkably by using this method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Porosity of 3D biomaterial scaffolds and osteogenesis.

            Porosity and pore size of biomaterial scaffolds play a critical role in bone formation in vitro and in vivo. This review explores the state of knowledge regarding the relationship between porosity and pore size of biomaterials used for bone regeneration. The effect of these morphological features on osteogenesis in vitro and in vivo, as well as relationships to mechanical properties of the scaffolds, are addressed. In vitro, lower porosity stimulates osteogenesis by suppressing cell proliferation and forcing cell aggregation. In contrast, in vivo, higher porosity and pore size result in greater bone ingrowth, a conclusion that is supported by the absence of reports that show enhanced osteogenic outcomes for scaffolds with low void volumes. However, this trend results in diminished mechanical properties, thereby setting an upper functional limit for pore size and porosity. Thus, a balance must be reached depending on the repair, rate of remodeling and rate of degradation of the scaffold material. Based on early studies, the minimum requirement for pore size is considered to be approximately 100 microm due to cell size, migration requirements and transport. However, pore sizes >300 microm are recommended, due to enhanced new bone formation and the formation of capillaries. Because of vascularization, pore size has been shown to affect the progression of osteogenesis. Small pores favored hypoxic conditions and induced osteochondral formation before osteogenesis, while large pores, that are well-vascularized, lead to direct osteogenesis (without preceding cartilage formation). Gradients in pore sizes are recommended for future studies focused on the formation of multiple tissues and tissue interfaces. New fabrication techniques, such as solid-free form fabrication, can potentially be used to generate scaffolds with morphological and mechanical properties more selectively designed to meet the specificity of bone-repair needs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioinspired structural materials.

              Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.
                Bookmark

                Author and article information

                Contributors
                jcs@fct.unl.pt
                jpb@fct.unl.pt
                Journal
                Prog Biomater
                Prog Biomater
                Progress in Biomaterials
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2194-0509
                2194-0517
                9 February 2023
                9 February 2023
                June 2023
                : 12
                : 137-153
                Affiliations
                [1 ]GRID grid.10772.33, ISNI 0000000121511713, I3N/CENIMAT, Materials Science Department, , NOVA School of Science and Technology, New University of Lisbon, ; Lisbon, Portugal
                [2 ]Bioceramed S.A., Rua José Gomes Ferreira 1, Arm D, São Julião Do Tojal, 2660-360 Loures, Portugal
                [3 ]GRID grid.10772.33, ISNI 0000000121511713, I3N/CENIMAT, Physics Department, , NOVA School of Science and Technology, New University of Lisbon, ; Caparica, Portugal
                Author information
                http://orcid.org/0000-0002-3996-6545
                Article
                217
                10.1007/s40204-023-00217-x
                10154456
                36757613
                9c122413-0d8e-4f2c-8f21-a08da4a4552c
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 September 2022
                : 18 January 2023
                Funding
                Funded by: fundação para a Ciência e Tecnologia
                Award ID: UIDB/50025/2020-2023
                Funded by: Universidade Nova de Lisboa
                Categories
                Original Research
                Custom metadata
                © The Author(s), under exclusive licence to Islamic Azad University 2023

                mesoporous hydroxyapatite,mesoporous bioactive glass,chitosan,scaffold,bone tissue engineering

                Comments

                Comment on this article