5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rehmannia alcohol extract inhibits neuropeptide secretion and alleviates osteoarthritis pain through cartilage protection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is a common joint disease characterized by chronic pain, and the perception of pain is closely associated with brain function and neuropeptide regulation. Rehmannia is common plant herb with anti-inflammatory and analgesic properties that is used to treat OA. However, it is unclear whether Rehmannia alleviates OA-related pain via regulation of neuropeptides and brain function. We examined the pain relief regulatory pathway in OA after treatment with Rehmannia by verifying the therapeutic effect of Rehmannia alcohol extract in vivo and vitro and exploring of the potential mechanism underlying the analgesic effect of Rahmanian using functional magnetic resonance imaging and measuring neuropeptide secretion. Our results showed that Rehmannia alcohol extract and the related active ingredient, Rehmannioside D, can delay cartilage degradation and alleviate inflammation in OA rats. The Rehmannia alcohol extract can also relieve OA pain, reduce the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP), and reverse the pathological changes in the cerebral cortex and hippocampus. Our research results demonstrate that Rehmannia alleviates OA pain by protecting cartilage, preventing the stimulation of inflammatory factors on neuropeptide secretion, and influencing the relevant functional areas of the brain.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic pain: an update on burden, best practices, and new advances

          Chronic pain exerts an enormous personal and economic burden, affecting more than 30% of people worldwide according to some studies. Unlike acute pain, which carries survival value, chronic pain might be best considered to be a disease, with treatment (eg, to be active despite the pain) and psychological (eg, pain acceptance and optimism as goals) implications. Pain can be categorised as nociceptive (from tissue injury), neuropathic (from nerve injury), or nociplastic (from a sensitised nervous system), all of which affect work-up and treatment decisions at every level; however, in practice there is considerable overlap in the different types of pain mechanisms within and between patients, so many experts consider pain classification as a continuum. The biopsychosocial model of pain presents physical symptoms as the denouement of a dynamic interaction between biological, psychological, and social factors. Although it is widely known that pain can cause psychological distress and sleep problems, many medical practitioners do not realise that these associations are bidirectional. While predisposing factors and consequences of chronic pain are well known, the flipside is that factors promoting resilience, such as emotional support systems and good health, can promote healing and reduce pain chronification. Quality of life indicators and neuroplastic changes might also be reversible with adequate pain management. Clinical trials and guidelines typically recommend a personalised multimodal, interdisciplinary treatment approach, which might include pharmacotherapy, psychotherapy, integrative treatments, and invasive procedures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Excessive mechanical loading promotes osteoarthritis through the gremlin-1–NF-κB pathway

            Exposure of articular cartilage to excessive mechanical loading is deeply involved in the pathogenesis of osteoarthritis. Here, we identify gremlin-1 as a mechanical loading-inducible factor in chondrocytes, detected at high levels in middle and deep layers of cartilage after cyclic strain or hydrostatic pressure loading. Gremlin-1 activates nuclear factor-κB signalling, leading to subsequent induction of catabolic enzymes. In mice intra-articular administration of gremlin-1 antibody or chondrocyte-specific deletion of Gremlin-1 decelerates osteoarthritis development, while intra-articular administration of recombinant gremlin-1 exacerbates this process. Furthermore, ras-related C3 botulinum toxin substrate 1 activation induced by mechanical loading enhances reactive oxygen species (ROS) production. Amongst ROS-activating transcription factors, RelA/p65 induces Gremlin-1 transcription, which antagonizes induction of anabolic genes such as Sox9, Col2a1, and Acan by bone morphogenetic proteins. Thus, gremlin-1 plays essential roles in cartilage degeneration by excessive mechanical loading.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Osteoarthritis Pain

              Joint pain is the hallmark symptom of osteoarthritis (OA) and the main reason for patients to seek medical assistance. OA pain greatly contributes to functional limitations of joints and reduced quality of life. Although several pain-relieving medications are available for OA treatment, the current intervention strategy for OA pain cannot provide satisfactory pain relief, and the chronic use of the drugs for pain management is often associated with significant side effects and toxicities. These observations suggest that the mechanisms of OA-related pain remain undefined. The current review mainly focuses on the characteristics and mechanisms of OA pain. We evaluate pathways associated with OA pain, such as nerve growth factor (NGF)/tropomyosin receptor kinase A (TrkA), calcitonin gene-related peptide (CGRP), C–C motif chemokine ligands 2 (CCL2)/chemokine receptor 2 (CCR2) and tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, and the Wnt/β-catenin signaling pathway. In addition, animal models currently used for OA pain studies and emerging preclinical studies are discussed. Understanding the multifactorial components contributing to OA pain could provide novel insights into the development of more specific and effective drugs for OA pain management.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                22 August 2023
                September 2023
                22 August 2023
                : 9
                : 9
                : e19322
                Affiliations
                [a ]Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
                [b ]Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
                [c ]College of Pharmacy Science, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
                [d ]College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
                Author notes
                []Corresponding author. Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China. lixihaifz@ 123456163.com
                [∗∗ ]Corresponding author. College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China. 2021025@ 123456fjtcm.edu.cn
                [1]

                Contributed equally.

                Article
                S2405-8440(23)06530-1 e19322
                10.1016/j.heliyon.2023.e19322
                10477487
                37674829
                9be4c754-bea9-4aac-bede-9417d4ab0e50
                © 2023 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 February 2023
                : 13 August 2023
                : 18 August 2023
                Categories
                Research Article

                osteoarthritis,rehmannia,rehmannioside d,neuropeptide,pain
                osteoarthritis, rehmannia, rehmannioside d, neuropeptide, pain

                Comments

                Comment on this article