12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CircRNA RERE Promotes the Oxidative Stress-Induced Apoptosis and Autophagy of Nucleus Pulposus Cells through the miR-299-5p/Galectin-3 Axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intervertebral disc degeneration (IDD) is widely accepted as a cause of low back pain and related degenerative musculoskeletal disorders. Nucleus pulposus (NP) cell loss is closely related to IDD progression. Thus, investigating the specifically targeted therapeutic agents against NP cell loss depends on understanding the molecular mechanisms. In this study, human NP cells were treated with hydrogen peroxide (H 2O 2). Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) kit. The expression of circRNA arginine-glutamic acid dipeptide repeats (hsa_circ_RERE) and miR-299-5p was analyzed by real-time quantitative PCR. Western blot analysis was used to assess the protein expression levels. The autophagy levels in NP cells were detected by using an electronic microscope, LC3B protein immunofluorescence, and western blot. The apoptosis levels of NP cells were detected by flow cytometry and western blot. Dual-luciferase reporter assay analyzed the miR-299-5p bound to circ_RERE and galectin-3. Our results revealed that H 2O 2 significantly inhibited the viability of NP cells, promoted apoptosis and autophagy, and upregulated galectin-3 expression. miR-299-5p was reduced in IDD and H 2O 2-induced NP cells. The overexpression of miR-299-5p promoted cell viability and attenuated apoptosis and autophagy under H 2O 2 treatment. Besides, circ_RERE was upregulated in IDD and H 2O 2-induced NP cells. However, knockdown of circ_RERE reversed the effects of miR-299-5p overexpression on cell viability, apoptosis, and autophagy in NP cells. We propose that circ_RERE promotes the H 2O 2-induced apoptosis and autophagy of NP cells through the miR-299-5p/galectin-3 axis and may provide a new target for the clinical treatment of IDD.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NCBI GEO: archive for functional genomics data sets—update

            The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All data are freely available for download in a variety of formats. GEO also provides several web-based tools and strategies to assist users to query, analyse and visualize data. This article reports current status and recent database developments, including the release of GEO2R, an R-based web application that helps users analyse GEO data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data

              Although microRNAs (miRNAs), other non-coding RNAs (ncRNAs) (e.g. lncRNAs, pseudogenes and circRNAs) and competing endogenous RNAs (ceRNAs) have been implicated in cell-fate determination and in various human diseases, surprisingly little is known about the regulatory interaction networks among the multiple classes of RNAs. In this study, we developed starBase v2.0 (http://starbase.sysu.edu.cn/) to systematically identify the RNA–RNA and protein–RNA interaction networks from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data sets generated by 37 independent studies. By analyzing millions of RNA-binding protein binding sites, we identified ∼9000 miRNA-circRNA, 16 000 miRNA-pseudogene and 285 000 protein–RNA regulatory relationships. Moreover, starBase v2.0 has been updated to provide the most comprehensive CLIP-Seq experimentally supported miRNA-mRNA and miRNA-lncRNA interaction networks to date. We identified ∼10 000 ceRNA pairs from CLIP-supported miRNA target sites. By combining 13 functional genomic annotations, we developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks. Finally, we developed interactive web implementations to provide visualization, analysis and downloading of the aforementioned large-scale data sets. This study will greatly expand our understanding of ncRNA functions and their coordinated regulatory networks.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Healthc Eng
                J Healthc Eng
                JHE
                Journal of Healthcare Engineering
                Hindawi
                2040-2295
                2040-2309
                2021
                15 December 2021
                : 2021
                : 2771712
                Affiliations
                1Department of Rehabilitation Medicine, Anningshi First People's Hospital, 2 Henan Road, 650302 Anning, Yunnan, China
                2Equipment Department, The First Affiliated Hospital of Dali University, 32 Jiashibai Road, 671000 Dali, Yunnan, China
                3Pain Management, Anningshi First People's Hospital, 2 Henan Road, 650302 Anning, Yunnan, China
                Author notes

                Academic Editor: Rahim Khan

                Author information
                https://orcid.org/0000-0002-3066-3425
                Article
                10.1155/2021/2771712
                8695020
                34956563
                9b55ab66-5147-4c01-9003-6396e20a1f0c
                Copyright © 2021 Rong Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 November 2021
                : 25 November 2021
                : 3 December 2021
                Categories
                Research Article

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content444

                Cited by7

                Most referenced authors776