6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of high cholesterol in SARS-CoV-2 infectivity.

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus disease 2019 (COVID19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus binds to angiotensinogen converting enzyme 2 (ACE2) which mediates viral entry into mammalian cells. COVID19 is notably severe in elderly and those with underlying chronic conditions. The cause of selective severity is not well understood. Here we show cholesterol and the signaling lipid phosphatidyl-inositol 4,5 bisphosphate (PIP 2) regulate viral infectivity through the localization of ACE2’s into nanoscopic (<200 nm) lipid clusters. Uptake of cholesterol into cell membranes (a condition common to chronic disease) causes ACE2 to move from PIP 2 lipids to endocytic ganglioside (GM1) lipids, where the virus is optimally located for viral entry. In mice, age, and high fat diet increase lung tissue cholesterol by up to 40%. And in smokers with chronic disease, cholesterol is elevated two-fold, a magnitude of change that dramatically increases infectivity of virus in cell culture. We conclude increasing the ACE2 location near endocytic lipids increases viral infectivity and may help explain the selective severity of COVID-19 in aged and diseased populations.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2

              How SARS-CoV-2 binds to human cells Scientists are racing to learn the secrets of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2), which is the cause of the pandemic disease COVID-19. The first step in viral entry is the binding of the viral trimeric spike protein to the human receptor angiotensin-converting enzyme 2 (ACE2). Yan et al. present the structure of human ACE2 in complex with a membrane protein that it chaperones, B0AT1. In the context of this complex, ACE2 is a dimer. A further structure shows how the receptor binding domain of SARS-CoV-2 interacts with ACE2 and suggests that it is possible that two trimeric spike proteins bind to an ACE2 dimer. The structures provide a basis for the development of therapeutics targeting this crucial interaction. Science, this issue p. 1444
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J Biol Chem
                The Journal of Biological Chemistry
                THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
                0021-9258
                1083-351X
                28 April 2023
                28 April 2023
                : 104763
                Affiliations
                [1 ]Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
                [2 ]Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
                [3 ]Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA
                [4 ]Department of Immunology and Virology, The Scripps Research Institute, Jupiter, FL, 33458, USA
                [5 ]Bruker Nano Surfaces, Fitchburg, WI, 53711, USA
                [6 ]Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
                [7 ]Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, 84112, USA
                Author notes
                []Correspondence:
                Article
                S0021-9258(23)01791-X 104763
                10.1016/j.jbc.2023.104763
                10140059
                37119851
                9b54eeb2-7764-4b28-9511-66cfd4f2d730
                © 2023 The Authors

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 30 March 2023
                : 11 April 2023
                : 24 April 2023
                Categories
                Research Articles

                Biochemistry
                Biochemistry

                Comments

                Comment on this article