7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dioxin risk assessment: mechanisms of action and possible toxicity in human health

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds.

          In June 2005, a World Health Organization (WHO)-International Programme on Chemical Safety expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin-like compounds, including some polychlorinated biphenyls (PCBs), were reevaluated. For this reevaluation process, the refined TEF database recently published by Haws et al. (2006, Toxicol. Sci. 89, 4-30) was used as a starting point. Decisions about a TEF value were made based on a combination of unweighted relative effect potency (REP) distributions from this database, expert judgment, and point estimates. Previous TEFs were assigned in increments of 0.01, 0.05, 0.1, etc., but for this reevaluation, it was decided to use half order of magnitude increments on a logarithmic scale of 0.03, 0.1, 0.3, etc. Changes were decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4',5-tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) (TEF = 0.03), and a single TEF value (0.00003) for all relevant mono-ortho-substituted PCBs. Additivity, an important prerequisite of the TEF concept was again confirmed by results from recent in vivo mixture studies. Some experimental evidence shows that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, and this needs to be investigated further. Certain individual and groups of compounds were identified for possible future inclusion in the TEF concept, including 3,4,4'-TCB (PCB 37), polybrominated dibenzo-p-dioxins and dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was expressed about direct application of the TEF/total toxic equivalency (TEQ) approach to abiotic matrices, such as soil, sediment, etc., for direct application in human risk assessment. This is problematic as the present TEF scheme and TEQ methodology are primarily intended for estimating exposure and risks via oral ingestion (e.g., by dietary intake). A number of future approaches to determine alternative or additional TEFs were also identified. These included the use of a probabilistic methodology to determine TEFs that better describe the associated levels of uncertainty and "systemic" TEFs for blood and adipose tissue and TEQ for body burden.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dioxin receptor is a ligand-dependent E3 ubiquitin ligase.

            Fat-soluble ligands, including sex steroid hormones and environmental toxins, activate ligand-dependent DNA-sequence-specific transcriptional factors that transduce signals through target-gene-selective transcriptional regulation. However, the mechanisms of cellular perception of fat-soluble ligand signals through other target-selective systems remain unclear. The ubiquitin-proteasome system regulates selective protein degradation, in which the E3 ubiquitin ligases determine target specificity. Here we characterize a fat-soluble ligand-dependent ubiquitin ligase complex in human cell lines, in which dioxin receptor (AhR) is integrated as a component of a novel cullin 4B ubiquitin ligase complex, CUL4B(AhR). Complex assembly and ubiquitin ligase activity of CUL4B(AhR) in vitro and in vivo are dependent on the AhR ligand. In the CUL4B(AhR) complex, ligand-activated AhR acts as a substrate-specific adaptor component that targets sex steroid receptors for degradation. Thus, our findings uncover a function for AhR as an atypical component of the ubiquitin ligase complex and demonstrate a non-genomic signalling pathway in which fat-soluble ligands regulate target-protein-selective degradation through a ubiquitin ligase complex.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats.

                Bookmark

                Author and article information

                Journal
                Environmental Science and Pollution Research
                Environ Sci Pollut Res
                Springer Science and Business Media LLC
                0944-1344
                1614-7499
                December 2015
                October 29 2015
                December 2015
                : 22
                : 24
                : 19434-19450
                Article
                10.1007/s11356-015-5597-x
                26514567
                9b4463f9-b39c-4d72-ae93-cd2fa4332e05
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article