3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A senescence-based prognostic gene signature for colorectal cancer and identification of the role of SPP1-positive macrophages in tumor senescence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Senescence is significantly associated with cancer prognosis. This study aimed to construct a senescence-related prognostic model for colorectal cancer (CRC) and to investigate the influence of senescence on the tumor microenvironment.

          Methods

          Transcriptome and clinical data of CRC cases were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Senescence-related prognostic genes detected by univariate Cox regression were included in Least Absolute Shrinkage and Selection Operator (LASSO) analysis to construct a model. The efficacy of the model was validated using the receiver operating characteristic (ROC) curve and survival analysis. Differentially expressed genes (DEGs) were identified and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed. CIBERSORT and Immuno-Oncology Biological Research (IOBR) were used to investigate the features of the tumor microenvironment. Single-cell RNA-seq data were used to investigate the expression levels of model genes in various cell types. Immunofluorescence staining for p21, SPP1, and CD68 was performed with human colon tissues.

          Results

          A seven-gene (PTGER2, FGF2, IGFBP3, ANGPTL4, DKK1, WNT16 and SPP1) model was finally constructed. Patients were classified as high- or low-risk using the median score as the threshold. The area under the ROC curve (AUC) for the 1-, 2-, and 3-year disease-specific survival (DSS) were 0.731, 0.651, and 0.643, respectively. Survival analysis showed a better 5-year DSS in low-risk patients in the construction and validation cohorts. GO and KEGG analyses revealed that DEGs were enriched in extracellular matrix (ECM)-receptor interactions, focal adhesion, and protein digestion and absorption. CIBERSORT and IOBR analyses revealed an abundance of macrophages and an immunosuppressive environment in the high-risk subgroup. Low-risk patients had higher response rates to immunotherapy than high-risk patients. ScRNA-seq data revealed high expression of SPP1 in a subset of macrophages with strong senescence-associated secretory phenotype (SASP) features. Using CRC tumor tissues, we discovered that SPP1 + macrophages were surrounded by a large number of senescent tumor cells in high-grade tumors.

          Conclusion

          Our study presents a novel model based on senescence-related genes that can identify CRC patients with a poor prognosis and an immunosuppressive tumor microenvironment. SPP1 + macrophages may correlate with cell senescence leading to poor prognosis.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Integrating single-cell transcriptomic data across different conditions, technologies, and species

          Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colorectal cancer statistics, 2017.

            Colorectal cancer (CRC) is one of the most common malignancies in the United States. Every 3 years, the American Cancer Society provides an update of CRC incidence, survival, and mortality rates and trends. Incidence data through 2013 were provided by the Surveillance, Epidemiology, and End Results program, the National Program of Cancer Registries, and the North American Association of Central Cancer Registries. Mortality data through 2014 were provided by the National Center for Health Statistics. CRC incidence rates are highest in Alaska Natives and blacks and lowest in Asian/Pacific Islanders, and they are 30% to 40% higher in men than in women. Recent temporal patterns are generally similar by race and sex, but differ by age. Between 2000 and 2013, incidence rates in adults aged ≥50 years declined by 32%, with the drop largest for distal tumors in people aged ≥65 years (incidence rate ratio [IRR], 0.50; 95% confidence interval [95% CI], 0.48-0.52) and smallest for rectal tumors in ages 50 to 64 years (male IRR, 0.91; 95% CI, 0.85-0.96; female IRR, 1.00; 95% CI, 0.93-1.08). Overall CRC incidence in individuals ages ≥50 years declined from 2009 to 2013 in every state except Arkansas, with the decrease exceeding 5% annually in 7 states; however, rectal tumor incidence in those ages 50 to 64 years was stable in most states. Among adults aged <50 years, CRC incidence rates increased by 22% from 2000 to 2013, driven solely by tumors in the distal colon (IRR, 1.24; 95% CI, 1.13-1.35) and rectum (IRR, 1.22; 95% CI, 1.13-1.31). Similar to incidence patterns, CRC death rates decreased by 34% among individuals aged ≥50 years during 2000 through 2014, but increased by 13% in those aged <50 years. Progress against CRC can be accelerated by increasing initiation of screening at age 50 years (average risk) or earlier (eg, family history of CRC/advanced adenomas) and eliminating disparities in high-quality treatment. In addition, research is needed to elucidate causes for increasing CRC in young adults. CA Cancer J Clin 2017. © 2017 American Cancer Society. CA Cancer J Clin 2017;67:177-193. © 2017 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                06 April 2023
                2023
                : 14
                : 1175490
                Affiliations
                [1] 1 Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
                [2] 2 Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
                [3] 3 Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
                Author notes

                Edited by: Baochi Ou, First Affiliated Hospital of Anhui Medical University, China

                Reviewed by: Leqi Zhou, Second Military Medical University, China; Minghan Li, Fudan University Shanghai Cancer Center, China

                *Correspondence: Enqiang Mao, maoeq@ 123456yeah.net ; Silei Sun, sunsilei1986@ 123456163.com

                †These authors have contributed equally to this work

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2023.1175490
                10115976
                37090726
                9b22bb5e-0a46-441e-a81b-db82d962e866
                Copyright © 2023 Yu, Chen, Xu, Mao and Sun

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 February 2023
                : 27 March 2023
                Page count
                Figures: 7, Tables: 1, Equations: 1, References: 31, Pages: 12, Words: 4657
                Categories
                Immunology
                Original Research

                Immunology
                colorectal cancer,senescence,prognostic model,immune infiltration,biomarkers
                Immunology
                colorectal cancer, senescence, prognostic model, immune infiltration, biomarkers

                Comments

                Comment on this article