5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive analysis of prognostic genes in gastric cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Gastric cancer is associated with high mortality, and effective methods for predicting prognosis are lacking. We aimed to identify potential prognostic markers associated with the development of gastric cancer through bioinformatic analyses.

          Methods: Gastric cancer-associated gene expression profiles were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The key genes involved in the development of gastric cancer were obtained by differential expression analysis, coexpression analysis, and short time-series expression miner (STEM) analysis. The potential prognostic value of differentially expressed genes was further evaluated using a Cox regression model and risk scores. Hierarchical clustering was applied to validate the impact of key genes on the overall survival of gastric cancer patients.

          Results: A total of 1381 genes were consistently dysregulated in the development of gastric cancer. Among them, 186 genes affected the overall survival of gastric cancer patients. The following genes had areas under the receiver operating characteristic curve greater than 0.9 in both datasets and were therefore considered key genes: ADAM12, CEP55, LRFN4, INHBA, ADH1B, DPT, FAM107A, and LOC100506388. LRFN4, DPT, and LOC100506388 were identified as potential prognostic genes for gastric cancer through a nomogram. Overexpression of LRFN4 and LOC100506388 was associated with a higher risk of gastric cancer. Finally, we found that tumors were infiltrated with high levels of Th2 cells and mast cells, and the infiltration levels were associated with overall survival in gastric cancer patients.

          Conclusions: We found that key dysregulated genes may have a prognostic value for the development of gastric cancer.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

            In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

              Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                31 October 2021
                22 October 2021
                : 13
                : 20
                : 23637-23651
                Affiliations
                [1 ]Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
                [2 ]Department of Clinical Laboratory, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
                Author notes
                [*]

                Equal contribution

                Correspondence to: Zhihu Huang; email: huangzhihu@gxmu.edu.cn
                Correspondence to: Wenwei Nong; email: nwwone@163.com, https://orcid.org/0000-0003-3060-3411
                Article
                203638 203638
                10.18632/aging.203638
                8580339
                34686626
                9aeaa2c6-977a-4885-a09a-962716b93731
                Copyright: © 2021 Huang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 June 2021
                : 03 October 2021
                Categories
                Research Paper

                Cell biology
                gastric cancer,prognosis,apoptosis,biomarker,signaling pathways,immune cells
                Cell biology
                gastric cancer, prognosis, apoptosis, biomarker, signaling pathways, immune cells

                Comments

                Comment on this article