0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Influence of Spectral Pretreatment on the Selection of Representative Calibration Samples for Soil Organic Matter Estimation Using Vis-NIR Reflectance Spectroscopy

      , , , , , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In constructing models for predicting soil organic matter (SOM) by using visible and near-infrared (vis–NIR) spectroscopy, the selection of representative calibration samples is decisive. Few researchers have studied the inclusion of spectral pretreatments in the sample selection strategy. We collected 108 soil samples and applied six commonly used spectral pretreatments to preprocess soil spectra, namely, Savitzky–Golay (SG) smoothing, first derivative (FD), logarithmic function log(1/R), mean centering (MC), standard normal variate (SNV), and multiplicative scatter correction (MSC). Then, the Kennard–Stone (KS) strategy was used to select calibration samples based on the pretreated spectra, and the size of the calibration set varied from 10 samples to 86 samples (80% of the total samples). These calibration sets were employed to construct partial least squares regression models (PLSR) to predict SOM, and the built models were validated by a set of 21 samples (20% of the total samples). The results showed that 64−78% of the calibration sets selected by the inclusion of pretreatment demonstrated significantly better performance of SOM estimation. The average improved residual predictive deviations (ΔRPD) were 0.06, 0.13, 0.19, and 0.13 for FD, log(1/R), MSC, and SNV, respectively. Thus, we concluded that spectral pretreatment improves the sample selection strategy, and the degree of its influence varies with the size of the calibration set and the type of pretreatment.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Soil carbon sequestration impacts on global climate change and food security.

            R. Lal (2004)
            The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistence of soil organic matter as an ecosystem property.

              Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.
                Bookmark

                Author and article information

                Contributors
                Journal
                RSBSBZ
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                February 2019
                February 21 2019
                : 11
                : 4
                : 450
                Article
                10.3390/rs11040450
                9ac4c2ab-f984-4d36-869c-326a712b7144
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article