3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Production of butanol from biomass: recent advances and future prospects

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Fermentative butanol production by Clostridia.

          Butanol is an aliphatic saturated alcohol having the molecular formula of C(4)H(9)OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological conversion of lignocellulosic biomass to ethanol.

            Jeewon Lee (1997)
            The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol. The development of the feasible biological delignification process should be possible if lignin-degrading microorganisms, their echophysiological requirements, and optimal bioreactor design are effectively coordinated. Some thermophilic anaerobes and recently-developed recombinant bacteria have advantageous features for direct microbial conversion of cellulose to ethanol, i.e. the simultaneous depolymerization of cellulosic carbohydrate polymers with ethanol production. The new fermentation technology converting xylose to ethanol needs also to be developed to make the overall conversion process more cost-effective. The bioconversion process of lignocellulosics to ethanol could be successfully developed and optimized by aggressively applying the related novel science and technologies to solve the known key problems of conversion process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioproduction of butanol from biomass: from genes to bioreactors.

              Butanol is produced chemically using either the oxo process starting from propylene (with H2 and CO over a rhodium catalyst) or the aldol process starting from acetaldehyde. The key problems associated with the bioproduction of butanol are the cost of substrate and butanol toxicity/inhibition of the fermenting microorganisms, resulting in a low butanol titer in the fermentation broth. Recent interest in the production of biobutanol from biomass has led to the re-examination of acetone-butanol-ethanol (ABE) fermentation, including strategies for reducing or eliminating butanol toxicity to the culture and for manipulating the culture to achieve better product specificity and yield. Advances in integrated fermentation and in situ product removal processes have resulted in a dramatic reduction of process streams, reduced butanol toxicity to the fermenting microorganisms, improved substrate utilization, and overall improved bioreactor performance.
                Bookmark

                Author and article information

                Journal
                Environmental Science and Pollution Research
                Environ Sci Pollut Res
                Springer Science and Business Media LLC
                0944-1344
                1614-7499
                July 2019
                May 21 2019
                July 2019
                : 26
                : 20
                : 20164-20182
                Article
                10.1007/s11356-019-05437-y
                9ab61011-0f51-46b8-9010-b6c858d78085
                © 2019

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article