1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stable and effective eco-enzyme cocktails in powder and liquid form of Stachybotrys microspora used as detergent additives

      research-article
      ,
      Heliyon
      Elsevier
      Green detergent, Enzymes stability, Biodegradation, Lignocellulosic waste, Cleaning efficiency

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The present work aims to optimize fermentation parameters for the simultaneous production of eco-enzymes: proteases, amylases, and endoglucanases from the same fungus Stachybotrys microspora, and to evaluate their stability in free form and formulated in lye as detergent additives.

          Methods

          Initially, enzyme cocktail production was assayed in a medium comprising inexpensive waste biomass. Using the best substrate, we investigated the effect of its different concentrations and the NaCl concentration on the three enzymes co-production. Next, we studied the effect of several additives on the storage stability of the lyophilized enzyme cocktail (powder in liquid forms) free and incorporated in commercial laundry detergent. Finally, the washing efficiency analysis of the newly formulated enzyme cocktail was evaluated on dirty tissue pieces with different stains.

          Results

          The highest enzymatic cocktail production was achieved at 30 °C for 96 h after adding 0.1% NaCl and 1.5% wheat bran as waste biomass in the basal culture medium. The effect of adding maltodextrin, sucrose, or polyethylene glycol 4000 during freeze-drying showed that maltodextrin is the best additive to protect the activities of proteases, amylases, and cellulases of liquid and powder enzyme form. Additionally, the liquid formulation of these enzymes showed excellent stability and compatibility with 1% maltodextrin and 10% glycerol. Interestingly, we have developed a new formulation of an enzyme cocktail (liquid and powder) stable and highly compatible with detergents. Comparing the washing performance of different formulations containing our enzyme cocktail to commercial ones showed significantly better removal of different types of stains.

          Conclusions

          This research shows a cost-effective approach to simultaneously produce proteases, amylases, and endoglucanases from Stachybotrys microspora that could be considered a compatible detergent additive in the green detergent industry.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar

          G L Miller (1959)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization.

            The influence of pH on the relative importance of the two principal decomposer groups in soil, fungi and bacteria, was investigated along a continuous soil pH gradient at Hoosfield acid strip at Rothamsted Research in the United Kingdom. This experimental location provides a uniform pH gradient, ranging from pH 8.3 to 4.0, within 180 m in a silty loam soil on which barley has been continuously grown for more than 100 years. We estimated the importance of fungi and bacteria directly by measuring acetate incorporation into ergosterol to measure fungal growth and leucine and thymidine incorporation to measure bacterial growth. The growth-based measurements revealed a fivefold decrease in bacterial growth and a fivefold increase in fungal growth with lower pH. This resulted in an approximately 30-fold increase in fungal importance, as indicated by the fungal growth/bacterial growth ratio, from pH 8.3 to pH 4.5. In contrast, corresponding effects on biomass markers for fungi (ergosterol and phospholipid fatty acid [PLFA] 18:2omega6,9) and bacteria (bacterial PLFAs) showed only a two- to threefold difference in fungal importance in the same pH interval. The shift in fungal and bacterial importance along the pH gradient decreased the total carbon mineralization, measured as basal respiration, by only about one-third, possibly suggesting functional redundancy. Below pH 4.5 there was universal inhibition of all microbial variables, probably derived from increased inhibitory effects due to release of free aluminum or decreasing plant productivity. To investigate decomposer group importance, growth measurements provided significantly increased sensitivity compared with biomass-based measurements.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                07 February 2024
                15 February 2024
                07 February 2024
                : 10
                : 3
                : e25610
                Affiliations
                [1]Laboratory of Molecular Biotechnology of Eukaryotes, Centre of Biotechnology of Sfax (CBS) University of Sfax, B.P “1177” 3018, Sfax, Tunisia
                Author notes
                []Corresponding author. inesbenhmad@ 123456gmail.com
                Article
                S2405-8440(24)01641-4 e25610
                10.1016/j.heliyon.2024.e25610
                10865333
                38356555
                9a7e787d-b2fd-46ae-b1ec-07193ff2b722
                © 2024 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 October 2023
                : 21 January 2024
                : 30 January 2024
                Categories
                Research Article

                green detergent,enzymes stability,biodegradation,lignocellulosic waste,cleaning efficiency

                Comments

                Comment on this article