22
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.

      The Journal of neuroscience : the official journal of the Society for Neuroscience
      Aconitate Hydratase, metabolism, Animals, Calcium, Cerebral Cortex, enzymology, Guinea Pigs, Hydrogen Peroxide, Ketoglutarate Dehydrogenase Complex, Mitochondria, NAD, Nerve Tissue Proteins, Oxidative Stress, Reactive Oxygen Species, Synaptosomes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alpha-ketoglutarate dehydrogenase (alpha-KGDH), a key enzyme in the Krebs' cycle, is a crucial early target of oxidative stress (Tretter and Adam-Vizi, 2000). The present study demonstrates that alpha-KGDH is able to generate H(2)O(2) and, thus, could also be a source of reactive oxygen species (ROS) in mitochondria. Isolated alpha-KGDH with coenzyme A (HS-CoA) and thiamine pyrophosphate started to produce H(2)O(2) after addition of alpha-ketoglutarate in the absence of nicotinamide adenine dinucleotide-oxidized (NAD(+)). NAD(+), which proved to be a powerful inhibitor of alpha-KGDH-mediated H(2)O(2) formation, switched the H(2)O(2) forming mode of the enzyme to the catalytic [nicotinamide adenine dinucleotide-reduced (NADH) forming] mode. In contrast, NADH stimulated H(2)O(2) formation by alpha-KGDH, and for this, neither alpha-ketoglutarate nor HS-CoA were required. When all of the substrates and cofactors of the enzyme were present, the NADH/NAD(+) ratio determined the rate of H(2)O(2) production. The higher the NADH/NAD(+) ratio the higher the rate of H(2)O(2) production. H(2)O(2) production as well as the catalytic function of the enzyme was activated by Ca(2+). In synaptosomes, using alpha-ketoglutarate as respiratory substrate, the rate of H(2)O(2) production increased by 2.5-fold, and aconitase activity decreased, indicating that alpha-KGDH can generate H(2)O(2) in in situ mitochondria. Given the NADH/NAD(+) ratio as a key regulator of H(2)O(2) production by alpha-KGDH, it is suggested that production of ROS could be significant not only in the respiratory chain but also in the Krebs' cycle when oxidation of NADH is impaired. Thus alpha-KGDH is not only a target of ROS but could significantly contribute to generation of oxidative stress in the mitochondria.

          Related collections

          Author and article information

          Comments

          Comment on this article