1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural Insight into Substrate Selectivity of Erwinia chrysanthemil-Asparaginase

      research-article
      , , , , , ,
      Biochemistry
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          l-Asparaginases of bacterial origin are a mainstay of acute lymphoblastic leukemia treatment. The mechanism of action of these enzyme drugs is associated with their capacity to deplete the amino acid l-asparagine from the blood. However, clinical use of bacterial l-asparaginases is complicated by their dual l-asparaginase and l-glutaminase activities. The latter, even though representing only ∼10% of the overall activity, is partially responsible for the observed toxic side effects. Hence, l-asparaginases devoid of l-glutaminase activity hold potential as safer drugs. Understanding the key determinants of l-asparaginase substrate specificity is a prerequisite step toward the development of enzyme variants with reduced toxicity. Here we present crystal structures of the Erwinia chrysanthemi l-asparaginase in complex with l-aspartic acid and with l-glutamic acid. These structures reveal two enzyme conformations—open and closed—corresponding to the inactive and active states, respectively. The binding of ligands induces the positioning of the catalytic Thr15 into its active conformation, which in turn allows for the ordering and closure of the flexible N-terminal loop. Notably, l-aspartic acid is more efficient than l-glutamic acid in inducing the active positioning of Thr15. Structural elements explaining the preference of the enzyme for l-asparagine over l-glutamine are discussed with guidance to the future development of more specific l-asparaginases.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia.

          L-Asparaginase is an effective antineoplastic agent, used in the acute lymphoblastic leukemia chemotherapy. It has been an integral part of combination chemotherapy protocols of pediatric acute lymphoblastic leukemia for almost 3 decades. The potential of L-asparaginase as a drug of leukemia has been a matter of discussion due to the high rate of allergic reactions exhibited by the patients receiving the medication of this enzyme drug. Frequent need of intramuscular injection has been another disadvantage associated with the native preparation. However, of late these clinical complications seem to have been addressed by modified versions of L-asparaginase. PEG-L-asparaginase proves to be most effective in this regard. It becomes important to discuss the efficacy of L-asparaginase as an antileukemic drug vis-a-vis these disadvantages. In this review, an attempt has been made to critically evaluate the pharmacological and clinical potential of various preparations of L-asparaginase as a drug. Advantages of PEG-L-asparaginase over native preparations and historical developments of therapy with l-asparaginase have also been outlined in the review below.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy.

            The crystal structure of Escherichia coli asparaginase II (EC 3.5.1.1), a drug (Elspar) used for the treatment of acute lymphoblastic leukemia, has been determined at 2.3 A resolution by using data from a single heavy atom derivative in combination with molecular replacement. The atomic model was refined to an R factor of 0.143. This enzyme, active as a homotetramer with 222 symmetry, belongs to the class of alpha/beta proteins. Each subunit has two domains with unique topological features. On the basis of present structural evidence consistent with previous biochemical studies, we propose locations for the active sites between the N- and C-terminal domains belonging to different subunits and postulate a catalytic role for Thr-89.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity.

              Using proteins in a therapeutic context often requires engineering to modify functionality and enhance efficacy. We have previously reported that the therapeutic antileukemic protein macromolecule Escherichia coli L-asparaginase is degraded by leukemic lysosomal cysteine proteases. In the present study, we successfully engineered L-asparaginase to resist proteolytic cleavage and at the same time improve activity. We employed a novel combination of mutant sampling using a genetic algorithm in tandem with flexibility studies using molecular dynamics to investigate the impact of lid-loop and mutations on drug activity. Applying these methods, we successfully predicted the more active L-asparaginase mutants N24T and N24A. For the latter, a unique hydrogen bond network contributes to higher activity. Furthermore, interface mutations controlling secondary glutaminase activity demonstrated the importance of this enzymatic activity for drug cytotoxicity. All selected mutants were expressed, purified, and tested for activity and for their ability to form the active tetrameric form. By introducing the N24A and N24A R195S mutations to the drug L-asparaginase, we are a step closer to individualized drug design.
                Bookmark

                Author and article information

                Journal
                Biochemistry
                Biochemistry
                bi
                bichaw
                Biochemistry
                American Chemical Society
                0006-2960
                1520-4995
                08 February 2016
                01 March 2016
                : 55
                : 8
                : 1246-1253
                Affiliations
                []The Jesse Brown VA Medical Center , Chicago, Illinois 60607, United States
                []Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, Illinois 60607, United States
                Author notes
                [* ]Address: 900 South Ashland Avenue, MBRB room 1108, Chicago, IL, 60607. Phone: (312) 355-5029; Fax: (312) 355-4535. E-mail: Lavie@ 123456uic.edu .
                Article
                10.1021/acs.biochem.5b01351
                4776285
                26855287
                9a5f132f-aa21-4fee-9953-1854cda85ec2
                Copyright © 2016 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 15 December 2015
                : 05 February 2016
                Categories
                Article
                Custom metadata
                bi5b01351
                bi-2015-01351t

                Biochemistry
                Biochemistry

                Comments

                Comment on this article