143
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opposing Nodal and BMP Signals Regulate Left–Right Asymmetry in the Sea Urchin Larva

      research-article
      , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A left-right patterning study in developing sea urchin shows that the opposing roles of Nodal and BMP signaling in patterning the left-right axis are conserved in deuterostomes.

          Abstract

          Nodal and BMP signals are important for establishing left-right (LR) asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.

          Author Summary

          Bilateral animals that are externally symmetric in appearance often have internal organs that are asymmetric with respect to the left and right sides of their bodies. Two signals, Nodal and BMP, have been shown to establish this asymmetry during vertebrate embryogenesis. We investigate here whether the same mechanisms that establish left-right patterning in vertebrates are conserved in invertebrate animals, specifically in the California purple sea urchin. This sea urchin passes through various stages in its lifecycle before developing to adulthood, including a feeding larva stage in which the tissue that goes on to form the adult, the so-called adult rudiment, forms on the left side. Previous studies have shown that right-sided Nodal signaling in sea urchins prevents the formation of the adult rudiment. In this study, we show that BMP signaling is activated on the left side and is required for the development of this left-sided structure. We also demonstrate that Nodal signaling blocks BMP activity and induces apoptosis of the tissue that forms the adult rudiment on the right side. We propose that the roles of Nodal and BMP signals in establishing left-right asymmetry are evolutionarily conserved.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism.

          Bone morphogenetic protein (BMP) signals coordinate developmental patterning and have essential physiological roles in mature organisms. Here we describe the first known small-molecule inhibitor of BMP signaling-dorsomorphin, which we identified in a screen for compounds that perturb dorsoventral axis formation in zebrafish. We found that dorsomorphin selectively inhibits the BMP type I receptors ALK2, ALK3 and ALK6 and thus blocks BMP-mediated SMAD1/5/8 phosphorylation, target gene transcription and osteogenic differentiation. Using dorsomorphin, we examined the role of BMP signaling in iron homeostasis. In vitro, dorsomorphin inhibited BMP-, hemojuvelin- and interleukin 6-stimulated expression of the systemic iron regulator hepcidin, which suggests that BMP receptors regulate hepcidin induction by all of these stimuli. In vivo, systemic challenge with iron rapidly induced SMAD1/5/8 phosphorylation and hepcidin expression in the liver, whereas treatment with dorsomorphin blocked SMAD1/5/8 phosphorylation, normalized hepcidin expression and increased serum iron levels. These findings suggest an essential physiological role for hepatic BMP signaling in iron-hepcidin homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The specificities of small molecule inhibitors of the TGFß and BMP pathways.

            Small molecule inhibitors of type 1 receptor serine threonine kinases (ALKs1-7), the mediators of TGFß and BMP signals, have been employed extensively to assess their physiological roles in cells and organisms. While all of these inhibitors have been reported as "selective" inhibitors of specific ALKs, extensive specificity tests against a wide array of protein kinases have not been performed. In this study, we examine the specificities and potencies of the most frequently used small molecule inhibitors of the TGFß pathway (SB-431542, SB-505124, LY-364947 and A-83-01) and the BMP pathway (Dorsomorphin and LDN-193189) against a panel of up to 123 protein kinases covering a broad spectrum of the human kinome. We demonstrate that the inhibitors of the TGFß pathway are relatively more selective than the inhibitors of the BMP pathway. Based on our specificity and potency profile and published data, we recommend SB-505124 as the most suitable molecule for use as an inhibitor of ALKs 4, 5 and 7 and the TGFß pathway. We do not recommend Dorsomorphin, also called Compound C, for use as an inhibitor of the BMP pathway. Although LDN-193189, a Dorsomorphin derivative, is a very potent inhibitor of ALK2/3 and the BMP-pathway, we found that it potently inhibited a number of other protein kinases at concentrations sufficient to inhibit ALK2/3 and its use as a selective BMP-pathway inhibitor has to be considered cautiously. Our observations have highlighted the need for caution when using these small molecule inhibitors to assess the physiological roles of BMP and TGFß pathways. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Left-right asymmetry in embryonic development: a comprehensive review.

              Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a thread connecting biomolecular chirality to human cognition, along the way involving fundamental aspects of cell biology, biophysics, and evolutionary biology. An understanding of LR asymmetry is important not only for basic science, but also for the biomedicine of a wide range of birth defects and human genetic syndromes. This review summarizes the current knowledge regarding LR patterning in a number of vertebrate and invertebrate species, discusses several poorly understood but important phenomena, and highlights some important open questions about the evolutionary origin and conservation of mechanisms underlying embryonic asymmetry.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                October 2012
                October 2012
                9 October 2012
                : 10
                : 10
                : e1001402
                Affiliations
                [1]Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
                Osaka University, Japan
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: YJL YHS. Performed the experiments: YJL. Analyzed the data: YJL YHS. Contributed reagents/materials/analysis tools: YJL YHS. Wrote the paper: YJL YHS.

                Article
                PBIOLOGY-D-12-00745
                10.1371/journal.pbio.1001402
                3467216
                23055827
                9a539639-c976-481b-8da3-fb779d1e44e6
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 February 2012
                : 28 August 2012
                Page count
                Pages: 13
                Funding
                This work was supported by the grants 99-2923-B-001-004-MY2 and 100-2627-B-001-003 from National Science Council, Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Molecular Cell Biology

                Life sciences
                Life sciences

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content27

                Cited by41

                Most referenced authors312