4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Theaflavin-3,3′-Digallate Plays a ROS-Mediated Dual Role in Ferroptosis and Apoptosis via the MAPK Pathway in Human Osteosarcoma Cell Lines and Xenografts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Globally, osteosarcoma (OS) is the most prevalent form of primary bone cancer in children and adolescents. Traditional neoadjuvant chemotherapy regimens have reached a bottleneck; thus, OS survivors have unsatisfactory outcomes. Theaflavin-3,3′-digallate (TF3) exhibits potent anticancer properties against many human cancers. Nevertheless, the biological effects and the underlying molecular mechanism of TF3 in human OS remain unclear. The objective of this study was to investigate the effects of TF3 on human OS cell lines and mouse xenograft models. The results showed that TF3 reduced cell viability, suppressed cell proliferation, and caused G0/G1 cell cycle arrest in both MG63 and HOS cell lines in a concentration-dependent manner. TF3 also altered the homeostatic mechanisms for iron storage in the examined cell lines, resulting in an excess of labile iron. Unsurprisingly, TF3 caused oxidative stress through reduced glutathione (GSH) exhaustion, reactive oxygen species (ROS) accumulation, and the Fenton reaction, which triggered ferroptosis and apoptosis in the cells. TF3 also induced MAPK signalling pathways, including the ERK, JNK, and p38 MAPK pathways. Furthermore, oxidative stress was shown to be the primary reason for TF3-induced proliferation inhibition, programmed cell death, and MAPK pathway activation in vitro. Moreover, TF3 exhibited markedly strong antitumour efficacy in vivo in mouse models. In summary, this study demonstrates that TF3 concomitantly plays dual roles in apoptotic and ferroptotic cell death by triggering the ROS and MAPK signalling pathways in both in vitro and in vivo models.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: an iron-dependent form of nonapoptotic cell death.

            Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Free radicals and antioxidants in normal physiological functions and human disease.

              Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2022
                25 October 2022
                : 2022
                : 8966368
                Affiliations
                1Chongqing Medical University, Chongqing 400016, China
                2Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
                3Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
                4Department of Orthopaedic Trauma, Chongqing General Hospital, Chongqing 401147, China
                5Department of Ultrasound, Chongqing General Hospital, Chongqing 401147, China
                6Department of Orthopedics, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing 404000, China
                7Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
                Author notes

                Academic Editor: Enrico Desideri

                Author information
                https://orcid.org/0000-0003-0042-0438
                https://orcid.org/0000-0002-2607-0854
                https://orcid.org/0000-0002-6665-0378
                https://orcid.org/0000-0003-4888-5218
                https://orcid.org/0000-0003-0513-7834
                https://orcid.org/0000-0002-1656-1043
                https://orcid.org/0000-0002-3914-2167
                https://orcid.org/0000-0001-6965-7404
                https://orcid.org/0000-0001-5407-138X
                https://orcid.org/0000-0002-0378-1362
                https://orcid.org/0000-0003-1778-932X
                Article
                10.1155/2022/8966368
                9626232
                36329803
                9a4132e3-18dc-4d30-b33b-3f65338d026e
                Copyright © 2022 Tao He et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 May 2022
                : 6 October 2022
                Funding
                Funded by: Natural Science Foundation of Chongqing
                Award ID: cstc2021jcyj-msxmX0909
                Funded by: Chongqing Yingcai Plan Project
                Award ID: cstc2021ycjh-bgzxm0041
                Funded by: National Natural Science Foundation of China
                Award ID: 82072976
                Funded by: Foundation of Chongqing University Three Gorges Hospital
                Award ID: 2022YJKYXM- 001
                Award ID: 2022YJKYXM- 043
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article