11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Template-based automation of treatment planning in advanced radiotherapy: a comprehensive dosimetric and clinical evaluation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the recent advanced developments in radiation therapy planning, treatment planning for head-neck and pelvic cancers remains challenging due to large concave target volumes, multiple dose prescriptions and numerous organs at risk close to targets. Inter-institutional studies highlighted that plan quality strongly depends on planner experience and skills. Automated optimization of planning procedure may improve plan quality and best practice. We performed a comprehensive dosimetric and clinical evaluation of the Pinnacle 3 AutoPlanning engine, comparing automatically generated plans (AP) with the historically clinically accepted manually-generated ones (MP). Thirty-six patients (12 for each of the following anatomical sites: head-neck, high-risk prostate and endometrial cancer) were re-planned with the AutoPlanning engine. Planning and optimization workflow was developed to automatically generate “dual-arc” VMAT plans with simultaneously integrated boost. Various dose and dose-volume parameters were used to build three metrics able to supply a global Plan Quality Index evaluation in terms of dose conformity indexes, targets coverage and sparing of critical organs. All plans were scored in a blinded clinical evaluation by two senior radiation oncologists. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array. Autoplanning was able to produce high-quality clinically acceptable plans in all cases. The main benefit of Autoplanning strategy was the improvement of overall treatment quality due to significant increased dose conformity and reduction of integral dose by 6–10%, keeping similar targets coverage. Overall planning time was reduced to 60–80 minutes, about a third of time needed for manual planning. In 94% of clinical evaluations, the AP plans scored equal or better to MP plans. Despite the increased fluence modulation, dose measurements reported an optimal agreement with dose calculations with a γ-pass-rate greater than 95% for 3%(global)-2 mm criteria. Autoplanning engine is an effective device enabling the generation of VMAT high quality treatment plans according to institutional specific planning protocols.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A technique for the quantitative evaluation of dose distributions.

          The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose-distance space) is termed the gamma index. Regions where gamma > 1 correspond to locations where the calculation does not meet the acceptance criteria. The determination of gamma throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the gamma index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Volumetric modulated arc therapy: IMRT in a single gantry arc.

            In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.

              Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA.
                Bookmark

                Author and article information

                Contributors
                savino.cilla@fgps.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                16 January 2020
                16 January 2020
                2020
                : 10
                : 423
                Affiliations
                [1 ]ISNI 0000 0001 0941 3192, GRID grid.8142.f, Medical Physics Unit, , Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, ; Campobasso, Italy
                [2 ]ISNI 0000 0001 0941 3192, GRID grid.8142.f, Radiation Oncology Unit, , Fondazione di Ricerca e Cura Giovanni Paolo II - Università Cattolica del Sacro Cuore, ; Campobasso, Italy
                [3 ]GRID grid.412311.4, Radiation Oncology Department, , DIMES Università di Bologna - Ospedale S.Orsola Malpighi, ; Bologna, Italy
                [4 ]Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
                Author information
                http://orcid.org/0000-0002-5631-1575
                Article
                56966
                10.1038/s41598-019-56966-y
                6965209
                31949178
                9a3cdc0b-fbeb-447a-99d9-650d72e53676
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 July 2019
                : 24 November 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                endometrial cancer,prostate cancer,radiotherapy,head and neck cancer
                Uncategorized
                endometrial cancer, prostate cancer, radiotherapy, head and neck cancer

                Comments

                Comment on this article