17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance is increasing globally and is now one of the major public health problems. Therefore, there is a need to search for new antimicrobial agents. The food industry generates large amounts of by-products that are rich in bioactive compounds, such as phenolic compounds, which are known to have several health benefits, including antioxidant and antimicrobial properties. Thus, we aimed to characterize the phenolic compounds present in pomegranate, quince, and persimmon by-products, as well as their antioxidant and antimicrobial activities. Phenolic compounds were extracted from pomegranate, quince, and persimmon leaves, seeds, and peels using a mixture of ethanol/water (80/20). The polyphenol profile of the extracts was determined by high-performance liquid chromatography. The antioxidant activity of the extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) methods. Antimicrobial susceptibility was evaluated using the Kirby–Bauer disk diffusion method. In general, leaves showed higher concentrations of phenolics than the peel and seeds of fruits. In total, 23 phenolic compounds were identified and quantified, with sanguiin and apigenin-3-O-galactoside being present in the highest concentrations. Leaf extracts of pomegranate showed higher antioxidant activities than the other components in all methods used. In general, all extracts had a greater antimicrobial activity against Gram-positive bacteria. Persimmon leaf and seed extracts inhibited a greater number of bacteria, both Gram-positive and -negative. The lowest minimum inhibitory concentration (MIC) detected among Gram-positive and -negative bacteria was 10 mg/mL for pomegranate peel and leaf extracts against Staphylococcus aureus and S. pseudintermedius and for pomegranate leaf extract against Escherichia coli. Our results reinforce the need to value food industry by-products that could be used as food preservatives and antibiotic adjuvants against multiresistant bacteria.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Vegetables, fruit, and cancer prevention: a review.

          In this review of the scientific literature on the relationship between vegetable and fruit consumption and risk of cancer, results from 206 human epidemiologic studies and 22 animal studies are summarized. The evidence for a protective effect of greater vegetable and fruit consumption is consistent for cancers of the stomach, esophagus, lung, oral cavity and pharynx, endometrium, pancreas, and colon. The types of vegetables or fruit that most often appear to be protective against cancer are raw vegetables, followed by allium vegetables, carrots, green vegetables, cruciferous vegetables, and tomatoes. Substances present in vegetables and fruit that may help protect against cancer, and their mechanisms, are also briefly reviewed; these include dithiolthiones, isothiocyanates, indole-3-carbinol, allium compounds, isoflavones, protease inhibitors, saponins, phytosterols, inositol hexaphosphate, vitamin C, D-limonene, lutein, folic acid, beta carotene, lycopene, selenium, vitamin E, flavonoids, and dietary fiber. Current US vegetable and fruit intake, which averages about 3.4 servings per day, is discussed, as are possible noncancer-related effects of increased vegetable and fruit consumption, including benefits against cardiovascular disease, diabetes, stroke, obesity, diverticulosis, and cataracts. Suggestions for dietitians to use in counseling persons toward increasing vegetable and fruit intake are presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Screening of radical scavenging activity of some medicinal and aromatic plant extracts

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.

              The chemical diversity of antioxidants makes it difficult to separate and quantify antioxidants from the vegetable matrix. Therefore, it is desirable to establish a method that can measure the total antioxidant activity level directly from vegetable extracts. The current literature clearly states that there is no "total antioxidant" as a nutritional index available for food labeling because of the lack of standard quantitation methods. Thus, this work reports the development of a simple, widely applicable antioxidant capacity index for dietary polyphenols and vitamins C and E, utilizing the copper(II)-neocuproine [Cu(II)-Nc] reagent as the chromogenic oxidizing agent. Because the copper(II) (or cupric) ion reducing ability of polyphenols is measured, the method is named by our research group "cupric reducing antioxidant capacity" abbreviated as the CUPRAC method. This method should be advantageous over the ferric reducing antioxidant power (FRAP) method because the redox chemistry of copper(II)-as opposed to that of ferric ion-involves faster kinetics. The method comprises mixing of the antioxidant solution (directly or after acid hydrolysis) with a copper(II) chloride solution, a neocuproine alcoholic solution, and an ammonium acetate aqueous buffer at pH 7 and subsequent measurement of the developed absorbance at 450 nm after 30 min. Because the color development is fast for compounds such as ascorbic acid, gallic acid, and quercetin but slow for naringin and naringenin, the latter compounds were assayed after incubation at 50 degrees C on a water bath for 20 min [after Cu(II)-Nc reagent addition] so as to force the oxidation reaction to reach completion. The flavonoid glycosides were hydrolyzed to their corresponding aglycons by refluxing in 1.2 M HCl-containing 50% MeOH so as to exert maximal reducing power toward Cu(II)-Nc. Certain compounds also needed incubation after acid hydrolysis to fully exhibit their reducing capability. The CUPRAC antioxidant capacities of synthetic mixtures of antioxidants were experimentally measured as Trolox equivalents and compared to those theoretically found by making use of the principle of additivity of absorbances assuming no chemical interaction between the mixture constituents. Because ascorbic acid is not resistant to elevated temperature incubation, it should be assayed initially by measuring the absorbance (at 450 nm) difference of original and ascorbate oxidase-added mixture solutions at the end of 1 min of Cu(II)-Nc reagent addition. Thus, the total CUPRAC antioxidant capacity of a mixture containing various antioxidants should be that finally measured after a suitable combination of hydrolysis and incubation procedures, added to the initially measured capacity due to ascorbate. The antioxidant polyphenolic compounds tested demonstrate that the highest capacities in the CUPRAC method were observed for epicatechin gallate, epigallocatechin gallate, quercetin, fisetin, epigallocatechin, catechin, and caffeic acid in this order, in accordance with theoretical expectations, because the number and position of the hydroxyl groups as well as the degree of conjugation of the whole molecule are important. The antioxidant potency of flavonoids is nearly proportional to the total number of -OH groups and is positively affected by the presence of an o-dihydroxy moiety in the B-ring. beta-Carotene, which did not react with the CUPRAC reagent in alcoholic aqueous medium, could be assayed in dichloromethane solvent. Linear calibration curves for ascorbic acid and flavonoids were redrawn in synthetic solutions containing a mixture of antioxidants, and also in real matrices such as grape and orange juices, green tea, and blackberry tea, showing an initial nonzero absorbance with the CUPRAC reagent. The parallellism of the linear calibration curves of pure compounds in a given complex matrix effectively demonstrated that there were no interferent chemical interactions among the solution constituents and that the antioxidant capacities of the tested antioxidants were additive. The CUPRAC reagent is reasonably selective, stable, easily accessible, and sensitive toward thiol-type oxidants, unlike the FRAP method. The reaction is carried out at nearly physiological pH as opposed to the unrealistic acidic pH of FRAP.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSNC4
                Antibiotics
                Antibiotics
                MDPI AG
                2079-6382
                July 2023
                June 21 2023
                : 12
                : 7
                : 1086
                Article
                10.3390/antibiotics12071086
                37508182
                9a3c1dc4-6c5d-4f14-af91-5afa11b7e1ba
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article