1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emergent microenvironments of nucleoli

      review-article
      , ,
      Nucleus
      Taylor & Francis
      Biomolecular condensates, emergent properties, nucleolus, pH gradients, phase separation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The complete sequence of a human genome*

          Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion base pair (bp) sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million bp of sequence containing 1,956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies. Twenty years after the initial drafts, a truly complete sequence of a human genome reveals what has been missing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A subcellular map of the human proteome

            Resolving the spatial distribution of the human proteome at a subcellular level greatly increases our understanding of human biology and disease. Here, we present a comprehensive image-based map of the subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of 13 major organelle proteomes. Exploration of the proteomes reveals single-cell variations of abundance or spatial distribution, and localization of approximately half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase Transitions in the Assembly of Multi-Valent Signaling Proteins

              Cells are organized on length scales ranging from Angstroms to microns. However, the mechanisms by which Angstrom-scale molecular properties are translated to micron-scale macroscopic properties are not well understood. Here we show that interactions between diverse, synthetic multivalent macromolecules (including multi-domain proteins and RNA) produce sharp, liquid-liquid demixing phase separations, generating micron-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to valency of the interacting species. In the case of the actin regulatory protein, neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) interacting with its established biological partners Nck and phosphorylated nephrin 1 , the phase transition corresponds to a sharp increase in activity toward the actin nucleation factor, Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions are likely used to spatially organize and biochemically regulate information throughout biology.
                Bookmark

                Author and article information

                Journal
                Nucleus
                Nucleus
                Nucleus
                Taylor & Francis
                1949-1034
                1949-1042
                5 March 2024
                2024
                5 March 2024
                : 15
                : 1
                : 2319957
                Affiliations
                [0001]Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis; , Campus, MO, USA
                Author notes
                CONTACT Rohit V. Pappu pappu@ 123456wustl.edu Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis; , Campus, MO, USA
                Article
                2319957
                10.1080/19491034.2024.2319957
                10936679
                38443761
                9a07b075-e0fb-4fcf-b438-5b40c0cc3b0f
                © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 4, References: 165, Pages: 1
                Categories
                Review Article
                Review

                Molecular biology
                biomolecular condensates,emergent properties,nucleolus,ph gradients,phase separation

                Comments

                Comment on this article