26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate

      , , , ,
      The Journal of Neuroscience
      Society for Neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1806176e156">Soluble oligomers of amyloid β-protein (oAβ) isolated from the brains of Alzheimer's disease (AD) patients have been shown experimentally (in the absence of amyloid plaques) to impair hippocampal synaptic plasticity, decrease synapses, induce tau hyperphosphorylation and neuritic dystrophy, activate microglial inflammation, and impair memory in normal adult rodents. Nevertheless, there has been controversy about what types of oligomers actually confer these AD-like phenotypes. Here, we show that the vast majority of soluble Aβ species obtained from brains of humans who died with confirmed AD elute at high molecular weight (HMW) on nondenaturing size-exclusion chromatography. These species have little or no cytotoxic activity in several bioassays. However, incubation of HMW oAβ in mildly alkaline buffer led to their quantitative dissociation into low molecular weight oligomers (∼8–70 kDa), and these were now far more bioactive: they impaired hippocampal LTP, decreased neuronal levels of β2-adrenergic receptors, and activated microglia in wt mice <i>in vivo</i>. Thus, most soluble Aβ assemblies in AD cortex are large and inactive but under certain circumstances can dissociate into smaller, highly bioactive species. Insoluble amyloid plaques likely sequester soluble HMW oligomers, limiting their potential to dissociate. We conclude that conditions that destabilize HMW oligomers or retard the sequestration of their smaller, more bioactive components are important drivers of Aβ toxicity. Selectively targeting these small, cytotoxic forms should be therapeutically beneficial. </p><p id="d1806176e161"> <b>SIGNIFICANCE STATEMENT</b> Oligomers of amyloid β-protein (oAβ) are tought to play an important role in Alzheimer's disease (AD), but there is confusion and controversy about what types and sizes of oligomers have disease-relevant activity. Using size-exclusion chromatography and three distinct measures of bioactivity, we show that the predominant forms of Aβ in aqueous extracts of AD brain are high molecular weight (HMW) and relatively inactive. Importantly, under certain conditions, the abundant HMW oAβ can dissociate into low molecular weight species, and these low molecular weight oligomers are significantly more bioactive on synapses and microglia than the HMW species from which they are derived. We conclude that conditions that destabilize HMW oAβ or retard the sequestration of smaller, more bioactive components are important drivers of Aβ toxicity. </p>

          Related collections

          Author and article information

          Journal
          The Journal of Neuroscience
          J. Neurosci.
          Society for Neuroscience
          0270-6474
          1529-2401
          January 04 2017
          January 04 2017
          January 04 2017
          November 14 2016
          : 37
          : 1
          : 152-163
          Article
          10.1523/JNEUROSCI.1698-16.2016
          5214627
          28053038
          99fb9586-b68c-45fd-a640-70b227e02743
          © 2016
          History

          Comments

          Comment on this article