1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of composite material from the copolymerized polyphenolic matrix with treated cassava peels starch

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional binders in the particleboards formulation involve use of formaldehyde resins. Epidemiologic studies show that formaldehyde is carcinogenic. Efforts to reduce formaldehyde emissions by use of scavengers has not been proven to reduce the emission. Molecular bonding of biobased adhesive molecules with lignocellulose materials provides an alternative way of producing composite material. In this study, maize stalk (MS), rice husks (RH) and sugarcane bagasse (SB) were used as sources of lignocellulose materials for particleboard formulation. SB, MS and RH were collected from their respective sites, sorted and dried. MS and RH were ground. Lignin content determination was done by drying lignocellulose material at 105 °C. Lignocellulose materials were prepared by hydrolysis of dried lignocellulose material with sodium hydroxide. Oxidized starch was prepared by oxidation of cassava peel starch using alkaline hydrogen peroxide. Particleboards were formulated through starch-lignocellulose polymerization at 60 °C compressed with 6.5 Nmm −2 pressure. Characterization of raw materials and formulated particleboards was done using XRD for mineralogical analysis, FTIR and NMR for elucidation of functional groups transformation. The results showed that esterification is the main process of chemical bonding in the particleboard formulation due to reaction between –COOH from starch and and OH- from lignocellulose. Etherification between hydroxyl groups from starch with hydroxyl groups from lignocellulose material. RH combined more through silication process with cassava peels starch than RH and SB showing materials containing high cellulose and hemicellulose content are more compatible. Composite materials formulated were used to produce medium density particleboards that can be used for making furniture and room partitioning.

          Abstract

          Materials; Science; Lignocellulose; Oxidation; Esterification; Etherification; Rice husks; Maize stalk; Sugarcane bagasse

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods

          As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin and structural carbohydrate contents of woody materials, estimate the nutritional value of animal feed, analyze the dietary fiber content of human food, compare potential biofuels feedstocks, and measure the efficiency of biomass-to-biofuels processes. The purpose of this paper is to review the history and lineage of biomass compositional analysis methods based on a sulfuric acid hydrolysis. These methods have become the de facto procedure for biomass compositional analysis. The paper traces changes to the biomass compositional analysis methods through time to the biomass methods currently used at the National Renewable Energy Laboratory (NREL). The current suite of laboratory analytical procedures (LAPs) offered by NREL is described, including an overview of the procedures and methodologies and some common pitfalls. Suggestions are made for continuing improvement to the suite of analyses.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

              Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as well as by changes in the inner cell wall structure, such as damaging, hole formation and loss of mechanical resistance, facilitating liquid and enzyme access to crystalline cellulose. Conclusions The results presented herewith show the efficiency of the proposed method for improving the enzymatic digestibility of sugarcane bagasse and provide understanding of the pretreatment action mechanism. Combining the different techniques applied in this work warranted thorough information about the undergoing morphological and chemical changes and was an efficient approach to understand the morphological effects resulting from sample delignification and its influence on the enhanced hydrolysis results.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                29 July 2020
                July 2020
                29 July 2020
                : 6
                : 7
                : e04574
                Affiliations
                [a ]Department of Physical Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya
                [b ]Department of Physical Sciences, Meru University of Science and Technology, Meru, Kenya
                Author notes
                []Corresponding author. stephowarui@ 123456yahoo.com
                Article
                S2405-8440(20)31418-3 e04574
                10.1016/j.heliyon.2020.e04574
                7394874
                999a6dfe-2128-4cb7-bfbc-3535aedeb4cf
                © 2020 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 18 April 2020
                : 18 June 2020
                : 24 July 2020
                Categories
                Article

                materials,science,lignocellulose,oxidation,esterification,etherification,rice husks,maize stalk,sugarcane bagasse

                Comments

                Comment on this article