1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout ( Sirt3 −/−) mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression ( Sirt3 Tg ) protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment. Crocidolite asbestos (100 µg/50 µL) or control was instilled intratracheally in C57Bl6 (Wild-Type) mice or Sirt3 Tg mice, and at 21 d lung fibrosis (histology, fibrosis score, Sircol assay) and lung Mo-AMs (flow cytometry) were assessed. Compared to controls, Sirt3 Tg mice were protected from asbestos-induced pulmonary fibrosis and had diminished lung mtDNA damage and Mo-AM recruitment. Further, pharmacologic SIRT3 inducers (i.e., resveratrol, viniferin, and honokiol) each diminish oxidant-induced AEC mtDNA damage in vitro and, in the case of honokiol, protection occurs in a SIRT3-dependent manner. We reason that SIRT3 preservation of AEC mtDNA is a novel therapeutic focus for managing patients with IPF and other types of pulmonary fibrosis.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage

            Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologues of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Idiopathic pulmonary fibrosis

              Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by progressive lung scarring and the histological picture of usual interstitial pneumonia (UIP). It is associated with increasing cough and dyspnoea and impaired quality of life. IPF affects ∼3 million people worldwide, with incidence increasing dramatically with age. The diagnostic approach includes the exclusion of other interstitial lung diseases or overlapping conditions and depends on the identification of the UIP pattern, usually with high-resolution CT; lung biopsy might be required in some patients. The UIP pattern is predominantly bilateral, peripheral and with a basal distribution of reticular changes associated with traction bronchiectasis and clusters of subpleural cystic airspaces. The biological processes underlying IPF are thought to reflect an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible ageing individual, although many questions remain on how to define susceptibility. Substantial progress has been made in the understanding of the clinical management of IPF, with the availability of two pharmacotherapeutic agents, pirfenidone and nintedanib, that decrease physiological progression and likely improve progression-free survival. Current efforts are directed at identifying IPF early, potentially relying on combinations of biomarkers that include circulating factors, demographics and imaging data.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                25 June 2021
                July 2021
                : 22
                : 13
                : 6856
                Affiliations
                [1 ]Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; p-cheresh@ 123456northwestern.edu (P.C.); seokjok@ 123456med.umich.edu (S.-J.K.); ziyan@ 123456northwestern.edu (Z.L.); s-buding@ 123456northwestern.edu (G.R.S.B.)
                [2 ]Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; swatanabe@ 123456northwestern.edu (S.W.); Mon.chi930@ 123456gmail.com (M.C.); helmin@ 123456northwestern.edu (K.A.H.)
                [3 ]Section of Pulmonary and Critical Care, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA; reneaj@ 123456medicine.bsd.uchicago.edu
                [4 ]Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; david.gius@ 123456northwestern.edu
                Author notes
                [* ]Correspondence: d-kamp@ 123456northwestern.edu ; Tel.: +1-(312)-908-8163; Fax: +1-(312)-908-4650
                [†]

                Contributed equally to this manuscript.

                Article
                ijms-22-06856
                10.3390/ijms22136856
                8268084
                34202229
                996c139b-8bbd-4885-88f8-5c3219ae154e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 02 April 2021
                : 21 June 2021
                Categories
                Article

                Molecular biology
                sirt3,mtdna damage,oxidative stress,alveolar epithelial cell,monocytes,pulmonary fibrosis

                Comments

                Comment on this article