5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellular Metabolic Heterogeneity In Vivo Is Recapitulated in Tumor Organoids 1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterogeneous populations within a tumor have varying metabolic profiles, which can muddle the interpretation of bulk tumor imaging studies of treatment response. Although methods to study tumor metabolism at the cellular level are emerging, these methods provide a single time point “snapshot” of tumor metabolism and require a significant time and animal burden while failing to capture the longitudinal metabolic response of a single tumor to treatment. Here, we investigated a novel method for longitudinal, single-cell tracking of metabolism across heterogeneous tumor cell populations using optical metabolic imaging (OMI), which measures autofluorescence of metabolic coenzymes as a report of metabolic activity. We also investigated whether in vivo cellular metabolic heterogeneity can be accurately captured using tumor-derived three-dimensional organoids in a genetically engineered mouse model of breast cancer. OMI measurements of response to paclitaxel and the phosphatidylinositol-3-kinase inhibitor XL147 in tumors and organoids taken at single cell resolution revealed parallel shifts in metaboltruic heterogeneity. Interestingly, these previously unappreciated heterogeneous metabolic responses in tumors and organoids could not be attributed to tumor cell fate or varying leukocyte content within the microenvironment, suggesting that heightened metabolic heterogeneity upon treatment is largely due to heterogeneous metabolic shifts within tumor cells. Together, these studies show that OMI revealed remarkable heterogeneity in response to treatment, which could provide a novel approach to predict the presence of potentially unresponsive tumor cell subpopulations lurking within a largely responsive bulk tumor population, which might otherwise be overlooked by traditional measurements.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy.

            Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8+ T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype.

              Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. In carcinoma cells, EMT can be associated with increased aggressiveness, and invasive and metastatic potential. To assess the occurrence of EMT in human breast tumors, we conducted a tissue microarray-based immunohistochemical study in 479 invasive breast carcinomas and 12 carcinosarcomas using 28 different markers. Unsupervised hierarchical clustering of the tumors and statistical analysis showed that up-regulation of EMT markers (vimentin, smooth-muscle-actin, N-cadherin, and cadherin-11) and overexpression of proteins involved in extracellular matrix remodeling and invasion (SPARC, laminin, and fascin), together with reduction of characteristic epithelial markers (E-cadherin and cytokeratins), preferentially occur in breast tumors with the "basal-like phenotype." Moreover, most breast carcinosarcomas also had a basal-like phenotype and showed expression of mesenchymal markers in their sarcomatous and epithelial components. To assess whether basal-like cells have intrinsic phenotypic plasticity for mesenchymal transition, we performed in vitro studies with the MCF10A cell line. In response to low cell density, MCF10A cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and Slug up-regulation, cadherin switching, and diffuse cytosolic relocalization of the catenins. Moreover, these phenotypic changes are associated with modifications in the global genetic differentiation program characteristic of the EMT process. In summary, our data indicate that in breast tumors, EMT likely occurs within a specific genetic context, the basal phenotype, and suggests that this proclivity to mesenchymal transition may be related to the high aggressiveness and the characteristic metastatic spread of these tumors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neoplasia
                Neoplasia
                Neoplasia (New York, N.Y.)
                Neoplasia Press
                1522-8002
                1476-5586
                09 May 2019
                June 2019
                09 May 2019
                : 21
                : 6
                : 615-626
                Affiliations
                [* ]Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN, 37235, USA
                []Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI, 53715, USA
                []University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI, 53792, USA
                [§ ]Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 3170 UW Medical Foundation Centennial Building, 1685 Highland Avenue, Madison, WI, 53705, USA
                []Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935 U-3218, Medical Research Building III, Nashville, TN, 37240, USA;
                [# ]Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
                [** ]Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
                [†† ]Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 1550 Engineering Drive Room #2130, Madison, WI, 53706
                Author notes
                [* ]Address all correspondence to: Melissa C. Skala, 330 N. Orchard St., Madison, WI 53715. mcskala@ 123456wisc.edu
                Article
                S1476-5586(19)30091-0
                10.1016/j.neo.2019.04.004
                6514366
                31078067
                995e4ab3-9f6f-417c-8403-51e7b5e8753a
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 14 February 2019
                : 9 April 2019
                : 10 April 2019
                Categories
                Original article

                Comments

                Comment on this article