19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Current and emerging trends in bioremediation of petrochemical waste: A review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references319

          • Record: found
          • Abstract: not found
          • Article: not found

          Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

            PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be enhanced by physical/chemical pretreatment of contaminated soil. Addition of biosurfactant-producing bacteria and light oils can increase the bioavailability of PAHs and metabolic potential of the bacterial community. The supplementation of contaminated soils with compost materials can also enhance biodegradation without long-term accumulation of extractable polar and more available intermediates. Wetlands, too, have found an application in PAH removal from wastewater. The intensive biological activities in such an ecosystem lead to a high rate of autotrophic and heterotrophic processes. Aquatic weeds Typha spp. and Scirpus lacustris have been used in horizontal-vertical macrophyte based wetlands to treat PAHs. An integrated approach of physical, chemical, and biological degradation may be adopted to get synergistically enhanced removal rates and to treat/remediate the contaminated sites in an ecologically favorable process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioremediation approaches for organic pollutants: a critical perspective.

              Due to human activities to a greater extent and natural processes to some extent, a large number of organic chemical substances such as petroleum hydrocarbons, halogenated and nitroaromatic compounds, phthalate esters, solvents and pesticides pollute the soil and aquatic environments. Remediation of these polluted sites following the conventional engineering approaches based on physicochemical methods is both technically and economically challenging. Bioremediation that involves the capabilities of microorganisms in the removal of pollutants is the most promising, relatively efficient and cost-effective technology. However, the current bioremediation approaches suffer from a number of limitations which include the poor capabilities of microbial communities in the field, lesser bioavailability of contaminants on spatial and temporal scales, and absence of bench-mark values for efficacy testing of bioremediation for their widespread application in the field. The restoration of all natural functions of some polluted soils remains impractical and, hence, the application of the principle of function-directed remediation may be sufficient to minimize the risks of persistence and spreading of pollutants. This review selectively examines and provides a critical view on the knowledge gaps and limitations in field application strategies, approaches such as composting, electrobioremediation and microbe-assisted phytoremediation, and the use of probes and assays for monitoring and testing the efficacy of bioremediation of polluted sites. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Environmental Science and Technology
                Critical Reviews in Environmental Science and Technology
                Informa UK Limited
                1064-3389
                1547-6537
                February 01 2017
                June 12 2017
                February 01 2017
                : 47
                : 3
                : 155-201
                Affiliations
                [1 ] Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
                [2 ] Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
                [3 ] Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
                [4 ] Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
                [5 ] Centre for Studies in Science Policy, Jawaharlal Nehru University (JNU), New Delhi, India
                [6 ] Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, India
                [7 ] School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi, India
                [8 ] Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
                Article
                10.1080/10643389.2017.1318616
                995c6979-b0c8-4cfa-add2-0055aba685a0
                © 2017
                History

                Comments

                Comment on this article