5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Damage to cartilage tissues is often difficult to repair owing to chronic inflammation and a lack of bioactive factors. Therefore, developing bioactive materials, such as hydrogels acting as extracellular matrix mimics, that can inhibit the inflammatory microenvironment and promote cartilage repair is crucial. Hyaluronic acid, which exists in cartilage and synovial fluid, has been extensively investigated for cartilage tissue engineering because of its promotion of cell adhesion and proliferation, regulation of inflammation, and enhancement of cartilage regeneration. However, hyaluronic acid-based hydrogels have poor degradation rates and unfavorable mechanical properties, limiting their application in cartilage tissue engineering. Recently, various multifunctional hyaluronic acid-based hydrogels, including alkenyl, aldehyde, thiolated, phenolized, hydrazide, and host–guest group-modified hydrogels, have been extensively studied for use in cartilage tissue engineering. In this review, we summarize the recent progress in the multifunctional design of hyaluronic acid-based hydrogels and their application in cartilage tissue engineering. Moreover, we outline the future research prospects and directions in cartilage tissue regeneration. This would provide theoretical guidance for developing hyaluronic acid-based hydrogels with specific properties to satisfy the requirements of cartilage tissue repair.

          Graphical abstract

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis.

          Osteoarthritis (OA), one of the most common rheumatic disorders, is characterized by cartilage breakdown and by synovial inflammation that is directly linked to clinical symptoms such as joint swelling, synovitis and inflammatory pain. The gold-standard method for detecting synovitis is histological analysis of samples obtained by biopsy, but the noninvasive imaging techniques MRI and ultrasonography might also perform well. The inflammation of the synovial membrane that occurs in both the early and late phases of OA is associated with alterations in the adjacent cartilage that are similar to those seen in rheumatoid arthritis. Catabolic and proinflammatory mediators such as cytokines, nitric oxide, prostaglandin E(2) and neuropeptides are produced by the inflamed synovium and alter the balance of cartilage matrix degradation and repair, leading to excess production of the proteolytic enzymes responsible for cartilage breakdown. Cartilage alteration in turn amplifies synovial inflammation, creating a vicious circle. As synovitis is associated with clinical symptoms and also reflects joint degradation in OA, synovium-targeted therapy could help alleviate the symptoms of the disease and perhaps also prevent structural progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyaluronic acid hydrogels for biomedical applications.

            Hyaluronic acid (HA), an immunoneutral polysaccharide that is ubiquitous in the human body, is crucial for many cellular and tissue functions and has been in clinical use for over thirty years. When chemically modified, HA can be transformed into many physical forms-viscoelastic solutions, soft or stiff hydrogels, electrospun fibers, non-woven meshes, macroporous and fibrillar sponges, flexible sheets, and nanoparticulate fluids-for use in a range of preclinical and clinical settings. Many of these forms are derived from the chemical crosslinking of pendant reactive groups by addition/condensation chemistry or by radical polymerization. Clinical products for cell therapy and regenerative medicine require crosslinking chemistry that is compatible with the encapsulation of cells and injection into tissues. Moreover, an injectable clinical biomaterial must meet marketing, regulatory, and financial constraints to provide affordable products that can be approved, deployed to the clinic, and used by physicians. Many HA-derived hydrogels meet these criteria, and can deliver cells and therapeutic agents for tissue repair and regeneration. This progress report covers both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine

                Bookmark

                Author and article information

                Contributors
                Journal
                Mater Today Bio
                Mater Today Bio
                Materials Today Bio
                Elsevier
                2590-0064
                13 November 2022
                15 December 2022
                13 November 2022
                : 17
                : 100495
                Affiliations
                [a ]Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
                [b ]College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
                [c ]Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
                Author notes
                []Corresponding author. sousou369@ 123456163.com
                [1]

                M. Wang and Z. Deng contributed equally to this paper.

                Article
                S2590-0064(22)00293-9 100495
                10.1016/j.mtbio.2022.100495
                9676212
                36420054
                9945e509-998e-4d4d-a05c-e7795d18b063
                © 2022 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 August 2022
                : 9 November 2022
                : 11 November 2022
                Categories
                Review Article

                hyaluronic acid,hydrogel,functional modification,cartilage tissue engineering

                Comments

                Comment on this article