Elevations in cytosolic free calcium concentration ([Ca(2+)](cyt)) constitute a fundamental signal transduction mechanism in eukaryotic cells, but the molecular identity of Ca(2+) channels initiating this signal in plants is still under debate. Here, we show by pharmacology and loss-of-function mutants that in tobacco and Arabidopsis, glutamate receptor-like channels (GLRs) facilitate Ca(2+) influx across the plasma membrane, modulate apical [Ca(2+)](cyt) gradient, and consequently affect pollen tube growth and morphogenesis. Additionally, wild-type pollen tubes grown in pistils of knock-out mutants for serine-racemase (SR1) displayed growth defects consistent with a decrease in GLR activity. Our findings reveal a novel plant signaling mechanism between male gametophyte and pistil tissue similar to amino acid-mediated communication commonly observed in animal nervous systems.