4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity viamodulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resveratrol is shown to alleviate Cd-induced histopathological lesions of the kidney, mitigating Cd-induced oxidative stress by activating NXRs (CAR/PXR/AHR/Nrf2) response and phase II detoxification system.

          Abstract

          Cadmium (Cd) is a toxic pollutant with high nephrotoxicity in the agricultural environment. Resveratrol has been found to have a renoprotective effect but the underlying mechanisms of this have not yet been fully elucidated. The aim of this study is to illustrate the antagonism of resveratrol against Cd-induced nephrotoxicity. A total of 80 birds were divided randomly into 4 groups and treated viadiet for 90 days as follows: control group (Con); 400 mg kg −1resveratrol group (Resv); 140 mg kg −1Cd group (Cd 140); and 140 mg kg −1Cd + 400 mg kg −1resveratrol group (Cd + Resv). It was observed that resveratrol treatment dramatically alleviated Cd-induced histopathological lesions of the kidney. Simultaneously, resveratrol mitigated Cd-induced oxidative stress by reducing MDA and H 2O 2production, alleviating GSH depletion and restoring the activity of antioxidant enzymes (T-SOD, Cu–Zn SOD, CAT, GST and GSH-Px). Resveratrol activated NXRs (CAR/PXR/AHR/Nrf2) signaling pathways and exerted antidotal roles by enhancing the phase I and II detoxification systems to relieve oxidative damage. Moreover, resveratrol ameliorated Cd-induced ultrastructural abnormality and mitochondria dysfunction by recovering mitochondrial function-related factors VDAC1, Cyt C and Sirt3 upregulation and Sirt1, PGC-1α, Nrf1 and TFAM transcription restrictions. Resveratrol attenuated Cd-induced excessive mitochondrial fission and promoted mitochondrial fusion, which reversed PINK1/Parkin-mediated mitophagy initiation. Collectively, our findings explicate the potential protection against Cd-induced nephrotoxicity and mitochondria damage.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione transferases.

          This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous alpha,beta-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-kappaB (NF-kappaB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current status of cadmium as an environmental health problem.

            Cadmium is a toxic metal occurring in the environment naturally and as a pollutant emanating from industrial and agricultural sources. Food is the main source of cadmium intake in the non-smoking population. The bioavailability, retention and toxicity are affected by several factors including nutritional status such as low iron status. Cadmium is efficiently retained in the kidney (half-time 10-30 years) and the concentration is proportional to that in urine (U-Cd). Cadmium is nephrotoxic, initially causing kidney tubular damage. Cadmium can also cause bone damage, either via a direct effect on bone tissue or indirectly as a result of renal dysfunction. After prolonged and/or high exposure the tubular injury may progress to glomerular damage with decreased glomerular filtration rate, and eventually to renal failure. Furthermore, recent data also suggest increased cancer risks and increased mortality in environmentally exposed populations. Dose-response assessment using a variety of early markers of kidney damage has identified U-Cd points of departure for early kidney effects between 0.5 and 3 microg Cd/g creatinine, similar to the points of departure for effects on bone. It can be anticipated that a considerable proportion of the non-smoking adult population has urinary cadmium concentrations of 0.5 microg/g creatinine or higher in non-exposed areas. For smokers this proportion is considerably higher. This implies no margin of safety between the point of departure and the exposure levels in the general population. Therefore, measures should be put in place to reduce exposure to a minimum, and the tolerably daily intake should be set in accordance with recent findings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fission and selective fusion govern mitochondrial segregation and elimination by autophagy.

              Accumulation of depolarized mitochondria within beta-cells has been associated with oxidative damage and development of diabetes. To determine the source and fate of depolarized mitochondria, individual mitochondria were photolabeled and tracked through fusion and fission. Mitochondria were found to go through frequent cycles of fusion and fission in a 'kiss and run' pattern. Fission events often generated uneven daughter units: one daughter exhibited increased membrane potential (delta psi(m)) and a high probability of subsequent fusion, while the other had decreased membrane potential and a reduced probability for a fusion event. Together, this pattern generated a subpopulation of non-fusing mitochondria that were found to have reduced delta psi(m) and decreased levels of the fusion protein OPA1. Inhibition of the fission machinery through DRP1(K38A) or FIS1 RNAi decreased mitochondrial autophagy and resulted in the accumulation of oxidized mitochondrial proteins, reduced respiration and impaired insulin secretion. Pulse chase and arrest of autophagy at the pre-proteolysis stage reveal that before autophagy mitochondria lose delta psi(m) and OPA1, and that overexpression of OPA1 decreases mitochondrial autophagy. Together, these findings suggest that fission followed by selective fusion segregates dysfunctional mitochondria and permits their removal by autophagy.
                Bookmark

                Author and article information

                Contributors
                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                February 26 2020
                2020
                : 11
                : 2
                : 1856-1868
                Affiliations
                [1 ]College of Veterinary Medicine
                [2 ]Northeast Agricultural University
                [3 ]Harbin
                [4 ]P. R. China
                [5 ]Department of Physiology and Pharmacology
                [6 ]Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine
                Article
                10.1039/C9FO02287B
                32068207
                99312307-0f38-4fd6-9f0d-816d03cf3bbf
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article