21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Notch Signaling in Inflammation-Induced Preterm Labor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Notch signaling plays an important role in regulation of innate immune responses and trophoblast function during pregnancy. To identify the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligands (DLL (Delta-like protein)-1/3/4), Jagged 1/2) and Notch-induced transcription factor Hes1 were assessed during preterm labor. Preterm labor was initiated on gestation day 14.5 by intrauterine (IU) injection of peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C). Notch1, Notch2, Notch4, DLL-1 and nuclear localization of Hes1 were significantly elevated in uterus and placenta during PGN+poly(I:C)-induced preterm labor. Ex vivo, Gamma secretase inhibitor (GSI) (inhibitor of Notch receptor processing) significantly diminished the PGN+poly(I:C)-induced secretion of M1- and M2-associated cytokines in decidual macrophages, and of proinflammatory cytokines (IFN-γ, TNF-α and IL-6) and chemokines (MIP-1β) in decidual and placental cells. Conversely, angiogenesis factors including Notch ligands Jagged 1/2 and DLL-4 and VEGF were significantly reduced in uterus and placenta during PGN+poly(I:C)-induced preterm labor. In vivo GSI treatment prevents PGN+poly(I:C)-induced preterm delivery by 55.5% and increased the number of live fetuses in-utero significantly compared to respective controls 48 hrs after injections. In summary, Notch signaling is activated during PGN+poly(I:C)-induced preterm labor, resulting in upregulation of pro-inflammatory responses, and its inhibition improves in-utero survival of live fetuses.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor-associated macrophages press the angiogenic switch in breast cancer.

          The development of a supportive vasculature is essential for tumor progression. In a mouse model of breast cancer, we found that tumor-associated macrophages that are recruited to the tumor just before malignant conversion are essential for the angiogenic switch. These findings establish a causal linkage to explain well-documented clinical correlations between macrophages, microvessel density, and poor prognosis in breast tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch signaling in vascular development and physiology.

            Notch signaling is an ancient intercellular signaling mechanism that plays myriad roles during vascular development and physiology in vertebrates. These roles include regulation of artery/vein differentiation in endothelial and vascular smooth muscle cells, regulation of blood vessel sprouting and branching during both normal development and tumor angiogenesis, and the differentiation and physiological responses of vascular smooth muscle cells. Defects in Notch signaling also cause inherited vascular and cardiovascular diseases. In this review, I summarize recent findings and discuss the growing relevance of Notch pathway modulation for therapeutic applications in disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling.

              While significant progress has been made in understanding the induction of tumor vasculature by secreted angiogenic factors, little is known regarding contact-dependent signals that promote tumor angiogenesis. Here, we report that the Notch ligand Jagged1 induced by growth factors via mitogen-activating protein kinase (MAPK) in head and neck squamous cell carcinoma (HNSCC) cells triggered Notch activation in neighboring endothelial cells (ECs) and promoted capillary-like sprout formation. Jagged1-expressing HNSCC cells significantly enhanced neovascularization and tumor growth in vivo. Moreover, the level of Jagged1 was significantly correlated with tumor blood vessel content and associated with HNSCC development. Our results elucidate a novel mechanism by which the direct interplay between tumor cells and ECs promotes angiogenesis through MAPK and Notch signaling pathways.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                16 October 2015
                2015
                : 5
                : 15221
                Affiliations
                [1 ]Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science , North Chicago, IL, USA
                [2 ]Department of Obstetrics and Gynecology, NorthShore University Health System , Evanston, IL
                [3 ]Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago , Chicago, IL.
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep15221
                10.1038/srep15221
                4607997
                26472156
                990f265a-25f0-474a-9958-dbcb0292c4be
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 April 2015
                : 18 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article