7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single- and dual-task gait performance and their diagnostic value in early-stage Parkinson's disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gait parameters are considered potential diagnostic markers of Parkinson's disease (PD). We aimed to 1) assess the gait impairment in early-stage PD and its related factors in the single-task (ST) and dual-task (DT) walking tests and 2) evaluate and compare the diagnostic value of gait parameters for early-stage PD under ST and DT conditions.

          Methods

          A total of 97 early-stage PD patients and 41 healthy controls (HC) were enrolled at Hwa Mei hospital. Gait parameters were gathered and compared between the two groups in the ST and DT walking test, controlling for covariates. Utilizing the receiver operating characteristic curve, diagnostic parameters were investigated.

          Results

          In the ST walking test, significantly altered gait patterns could be observed in early-stage PD patients in all domains of gait, except for asymmetry ( P < 0.05). Compared to the ST walking test, the early-stage PD group performed poorly in the DT walking test in the pace, rhythm, variability and postural control domain ( P < 0.05). Older, heavier subjects, as well as those with lower height, lower level of education and lower gait velocity, were found to have a poorer gait performance ( P < 0.05). Stride length (AUC = 0.823, sensitivity, 68.0%; specificity, 85.4%; P < 0.001) and heel strike angle (AUC = 0.796, sensitivity, 71.1%; specificity, 80.5%; P < 0.001) could distinguish early-stage PD patients from HCs with moderate accuracy, independent of covariates. The diagnostic accuracy of gait parameters under ST conditions were statistically noninferior to those under DT conditions( P>0.05). Combining all gait parameters with diagnostic values under ST and DT walking test, the predictive power significantly increased with an AUC of 0.924 (sensitivity, 85.4%; specificity, 92.7%; P < 0.001).

          Conclusion

          Gait patterns altered in patients with early-stage PD but the gait symmetry remained preserved. Stride length and heel strike angle were the two most prominent gait parameters of altered gait in early-stage of PD that could serve as diagnostic markers of early-stage PD. Our findings are helpful to understand the gait pattern of early-stage PD and its related factors and can be conducive to the development of new diagnostic tools for early-stage PD.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          pROC: an open-source package for R and S+ to analyze and compare ROC curves

          Background Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface. Results With data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC. Conclusions pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MDS clinical diagnostic criteria for Parkinson's disease.

            This document presents the Movement Disorder Society Clinical Diagnostic Criteria for Parkinson's disease (PD). The Movement Disorder Society PD Criteria are intended for use in clinical research but also may be used to guide clinical diagnosis. The benchmark for these criteria is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise in PD diagnosis. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the Movement Disorder Society PD Criteria retain motor parkinsonism as the core feature of the disease, defined as bradykinesia plus rest tremor or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies on three categories of diagnostic features: absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of the PD diagnosis). Two levels of certainty are delineated: clinically established PD (maximizing specificity at the expense of reduced sensitivity) and probable PD (which balances sensitivity and specificity). The Movement Disorder Society criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, the Movement Disorder Society criteria will need continuous revision to accommodate these advances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statistics corner: A guide to appropriate use of correlation coefficient in medical research.

              M M Mukaka (2012)
              Correlation is a statistical method used to assess a possible linear association between two continuous variables. It is simple both to calculate and to interpret. However, misuse of correlation is so common among researchers that some statisticians have wished that the method had never been devised at all. The aim of this article is to provide a guide to appropriate use of correlation in medical research and to highlight some misuse. Examples of the applications of the correlation coefficient have been provided using data from statistical simulations as well as real data. Rule of thumb for interpreting size of a correlation coefficient has been provided.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                14 October 2022
                2022
                : 13
                : 974985
                Affiliations
                Department of Neurology, Hwa Mei Hospital, University of Chinese Academy of Sciences , Ningbo, China
                Author notes

                Edited by: Antonio Suppa, Sapienza University of Rome, Italy

                Reviewed by: Edoardo Bianchini, Sapienza University of Rome, Italy; Vrutangkumar V. Shah, Oregon Health and Science University, United States

                *Correspondence: Zhaoying Chen chenzy_nbey@ 123456163.com

                This article was submitted to Movement Disorders, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2022.974985
                9615249
                36313494
                9907780a-ed49-4c73-8772-4344596cd321
                Copyright © 2022 Zhang, Fan, Yu, Li, Chen and Guan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 June 2022
                : 28 September 2022
                Page count
                Figures: 3, Tables: 5, Equations: 0, References: 70, Pages: 15, Words: 10822
                Categories
                Neurology
                Original Research

                Neurology
                gait analysis,dual task,wearable sensors,parkinson's disease,diagnosis
                Neurology
                gait analysis, dual task, wearable sensors, parkinson's disease, diagnosis

                Comments

                Comment on this article

                scite_
                11
                1
                9
                0
                1
                Smart Citations
                This paper has 1 correction
                11
                1
                9
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content211

                Cited by5

                Most referenced authors816