4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          N6-methyladenosine (m6A) is the most abundant posttranscriptional modification of mRNA in eukaryotes. Recent evidence suggests that dysregulated m6A-associated proteins and m6A modifications play a pivotal role in the initiation and progression of diseases such as cancer. Here, we identified that IGF2BP3 is specifically overexpressed in acute myeloid leukemia (AML), a subtype of leukemia associated with poor prognosis and high genetic risk. IGF2BP3 is required for maintaining AML cell survival in an m6A-dependent manner, and knockdown of IGF2BP3 dramatically suppresses the apoptosis, reduces the proliferation, and impairs the leukemic capacity of AML cells in vitro and in vivo. Mechanistically, IGF2BP3 interacts with RCC2 mRNA and stabilizes the expression of m6A-modified RNA. Thus, we provided compelling evidence demonstrating that the m6A reader IGF2BP3 contributes to tumorigenesis and poor prognosis in AML and can serve as a target for the development of cancer therapeutics.

          Leukemia: Key component of disease progression identified

          Inhibiting a protein that is overexpressed in the bone marrow of acute myeloid leukemia patients may prove valuable in treating the disease. Recent research has demonstrated the important role played by epigenetics in cancers – for example, disruption to a common mRNA modification known as m6A can result in cancer initiation and progression. Jianchuan Deng and co-workers at Chongqing Medical Universit0y, China, examined the role of an m6A-related protein called IGF2BP3 in mice models and samples from leukemia patients. IGF2BP3 was overexpressed in patients’ bone marrows, the levels of the protein correlating with extent of proliferation of leukemia cells and poor prognosis. IGF2BP3 stabilises the activity of a known cancer-related protein, promoting leukemia progression. Blocking IGF2BP3 expression reduced cell proliferation and impaired activity of leukemic cells, suggesting the protein may be a useful therapeutic target.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic RNA Modifications in Gene Expression Regulation

          Over 100 types of chemical modifications have been identified in cellular RNAs. While the 5' cap modification and the poly(A) tail of eukaryotic mRNA play key roles in regulation, internal modifications are gaining attention for their roles in mRNA metabolism. The most abundant internal mRNA modification is N6-methyladenosine (m6A), and identification of proteins that install, recognize, and remove this and other marks have revealed roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes. Abundant noncoding RNAs such as tRNAs, rRNAs, and spliceosomal RNAs are also heavily modified and depend on the modifications for their biogenesis and function. Our understanding of the biological contributions of these different chemical modifications is beginning to take shape, but it's clear that in both coding and noncoding RNAs, dynamic modifications represent a new layer of control of genetic information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition of RNA N 6 -methyladenosine by IGF2BP Proteins Enhances mRNA Stability and Translation

            N 6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTHDF2, IGF2BPs promote the stability and storage of their target mRNAs (e.g., MYC) in an m6A-depedent manner under normal and stress conditions and thus affect gene expression output. Moreover, the K homology (KH) domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Our work therefore reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reading, writing and erasing mRNA methylation

              RNA methylation to form N6-methyladenosine (m6A) in mRNA accounts for the most abundant mRNA internal modification and has emerged as a widespread regulatory mechanism that controls gene expression in diverse physiological processes. Transcriptome-wide m6A mapping has revealed the distribution and pattern of m6A in cellular RNAs, referred to as the epitranscriptome. These maps have revealed the specific mRNAs that are regulated by m6A, providing mechanistic links connecting m6A to cellular differentiation, cancer progression and other processes. The effects of m6A on mRNA are mediated by an expanding list of m6A readers and m6A writer-complex components, as well as potential erasers that currently have unclear relevance to m6A prevalence in the transcriptome. Here we review new and emerging methods to characterize and quantify the epitranscriptome, and we discuss new concepts - in some cases, controversies - regarding our understanding of the mechanisms and functions of m6A readers, writers and erasers.
                Bookmark

                Author and article information

                Contributors
                dengjccq@hospital.cqmu.edu.cn
                Journal
                Exp Mol Med
                Exp Mol Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                25 February 2022
                25 February 2022
                February 2022
                : 54
                : 2
                : 194-205
                Affiliations
                GRID grid.412461.4, ISNI 0000 0004 9334 6536, Department of Hematology, , The Second Affiliated Hospital of Chongqing Medical University, ; Chongqing, 400010 China
                Author information
                http://orcid.org/0000-0001-9927-579X
                Article
                735
                10.1038/s12276-022-00735-x
                8894383
                35217832
                98f860b2-766b-4431-9768-f3c4d1e3eda4
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 July 2021
                : 7 December 2021
                : 27 December 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Molecular medicine
                myeloma,epigenetics
                Molecular medicine
                myeloma, epigenetics

                Comments

                Comment on this article