10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective detection of food contaminants using engineered gallium-organic frameworks with MD and metadynamics simulations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exclusion mechanism of food contaminants such as bisphenol A (BPA), Flavonoids (FLA), and Goitrin (GOI) onto the novel gallium–metal organic framework (MOF) and functionalized MOF with oxalamide group (MOF-OX) is evaluated by utilizing molecular dynamics (MD) and Metadynamics simulations. The atoms in molecules (AIM) analysis detected different types of atomic interactions between contaminant molecules and substrates. To assess this procedure, a range of descriptors including interaction energies, root mean square displacement, radial distribution function (RDF), density, hydrogen bond count (HB), and contact numbers are examined across the simulation trajectories. The most important elements in the stability of the systems under examination are found to be stacking π–π and HB interactions. It was confirmed by a significant value of total interaction energy for BPA/MOF-OX (− 338.21 kJ mol −1) and BPA/MOF (− 389.95 kJ mol −1) complexes. Evaluation of interaction energies reveals that L–J interaction plays an essential role in the adsorption of food contaminants on the substrates. The free energy values for the stability systems of BPA/MOF and BPA/MOF-OX complexes at their global minima reached about BPA/MOF = − 254.29 kJ mol −1 and BPA/MOF-OX = − 187.62 kJ mol −1, respectively. Nevertheless, this work provides a new strategy for the preparation of a new hierarchical tree-dimensional of the Ga-MOF hybrid material for the adsorption and exclusion of food contaminates and their effect on human health.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging Multifunctional Metal-Organic Framework Materials.

          Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity-A Review.

            Numerous studies have investigated the environmental occurrence, human exposure, and toxicity of bisphenol A (BPA). Following stringent regulations on the production and usage of BPA, several bisphenol analogues have been produced as a replacement for BPA in various applications. The present review outlines the current state of knowledge on the occurrence of bisphenol analogues (other than BPA) in the environment, consumer products and foodstuffs, human exposure and biomonitoring, and toxicity. Whereas BPA was still the major bisphenol analogue found in most environmental monitoring studies, BPF and BPS were also frequently detected. Elevated concentrations of BPAF, BPF, and BPS (i.e., similar to or greater than that of BPA) have been reported in the abiotic environment and human urine from some regions. Many analogues exhibit endocrine disrupting effects, cytotoxicity, genotoxicity, reproductive toxicity, dioxin-like effects, and neurotoxicity in laboratory studies. BPAF, BPB, BPF, and BPS have been shown to exhibit estrogenic and/or antiandrogenic activities similar to or even greater than that of BPA. Knowledge gaps and research needs have been identified, which include the elucidation of environmental occurrences, persistence, and fate of bisphenol analogues (other than BPA), sources and pathways for human exposure, effects on reproductive systems and the mammary gland, mechanisms of toxicity from coexposure to multiple analogues, metabolic pathways and products, and the impact of metabolic modification on toxicity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PLUMED: A portable plugin for free-energy calculations with molecular dynamics

                Bookmark

                Author and article information

                Contributors
                hraeisi@birjand.ac.ir
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 August 2024
                5 August 2024
                2024
                : 14
                : 18144
                Affiliations
                Department of Chemistry, University of Birjand, ( https://ror.org/03g4hym73) Birjand, Iran
                Article
                69111
                10.1038/s41598-024-69111-1
                11300645
                39103470
                98ec3f20-f8f4-40be-b690-16f845ac67a3
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 30 May 2024
                : 31 July 2024
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                metal–organic frameworks (mofs),molecular dynamics simulations (md),food pollutants,oxalamide,metadynamics simulations,biochemistry,biological techniques,computational biology and bioinformatics,health care,materials science

                Comments

                Comment on this article