24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix metalloproteinase (MMP) is defined as an endopeptidase in the extracellular matrix (ECM), which plays essential roles in physiological processes such as organogenesis, wound healing, angiogenesis, apoptosis and motility. MMPs are produced and assembled in the cytoplasm as proenzymes with a cytoplasmic domain and require extracellular activation. MMPs can degrade receptors, extracellular matrix proteins, PARPs and release apoptotic substances. MMPs have been found in the cytosol, organelles and extracellular compartments and recently many types of MMPs have been found in the nucleus. However, the mechanisms and roles of MMPs inside the cell nucleus are still poorly understood. Here we summarized the nuclear localization mechanisms of MMPs and their functions in the nucleus such as apoptosis, tissue remodeling upon injury and cancer progression. Most importantly, we found that nuclear MMPs have evolved to translocate to membrane and target ECM possibly through evolution of nuclear localization signal (NLS), natural selection and anti-apoptotic survival. Thus, the knowledge about the evolution and regulation of nuclear MMPs appears to be essential in understanding a variety of cellular processes along with the development of MMP-targeted therapeutic drugs against the progression of certain diseases.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting.

          Matrix metalloproteinases (MMPs) consist of a multigene family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases implicated in pathological processes, such as carcinogenesis. In this regard, their activity plays a pivotal role in tumor growth and the multistep processes of invasion and metastasis, including proteolytic degradation of ECM, alteration of the cell-cell and cell-ECM interactions, migration and angiogenesis. The underlying premise of the current minireview is that MMPs are able to proteolytically process substrates in the extracellular milieu and, in so doing, promote tumor progression. However, certain members of the MMP family exert contradicting roles at different stages during cancer progression, depending among other factors on the tumor stage, tumor site, enzyme localization and substrate profile. MMPs are therefore amenable to therapeutic intervention by synthetic and natural inhibitors, providing perspectives for future studies. Multiple therapeutic agents, called matrix metalloproteinase inhibitors (MMPIs) have been developed to target MMPs, attempting to control their enzymatic activity. Even though clinical trials with these compounds do not show the expected results in most cases, the field of MMPIs is ongoing. This minireview critically evaluates the role of MMPs in relation to cancer progression, and highlights the challenges, as well as future prospects, for the design, development and efficacy of MMPIs. © 2010 The Authors Journal compilation © 2010 FEBS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees

            Motivation: Large multiple sequence alignments (MSAs), consisting of thousands of sequences, are becoming more and more common, due to advances in sequencing technologies. The MAFFT MSA program has several options for building large MSAs, but their performances have not been sufficiently assessed yet, because realistic benchmarking of large MSAs has been difficult. Recently, such assessments have been made possible through the HomFam and ContTest benchmark protein datasets. Along with the development of these datasets, an interesting theory was proposed: chained guide trees increase the accuracy of MSAs of structurally conserved regions. This theory challenges the basis of progressive alignment methods and needs to be examined by being compared with other known methods including computationally intensive ones. Results: We used HomFam, ContTest and OXFam (an extended version of OXBench) to evaluate several methods enabled in MAFFT: (1) a progressive method with approximate guide trees, (2) a progressive method with chained guide trees, (3) a combination of an iterative refinement method and a progressive method and (4) a less approximate progressive method that uses a rigorous guide tree and consistency score. Other programs, Clustal Omega and UPP, available for large MSAs, were also included into the comparison. The effect of method 2 (chained guide trees) was positive in ContTest but negative in HomFam and OXFam. Methods 3 and 4 increased the benchmark scores more consistently than method 2 for the three datasets, suggesting that they are safer to use. Availability and Implementation: http://mafft.cbrc.jp/alignment/software/ Contact: katoh@ifrec.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Divorcing ARF and p53: an unsettled case.

              C Sherr (2006)
              Mammalian cells that sustain oncogenic insults can invoke defensive programmes that either halt their division or trigger their apoptosis, but these countermeasures must be finely tuned to discriminate between physiological and potentially harmful growth-promoting states. By functioning specifically to oppose abnormally prolonged and sustained proliferative signals produced by activated oncogenes, the ARF tumour suppressor antagonizes functions of MDM2 to induce protective responses that depend on the p53 transcription factor and its many target genes. However, ARF has been reported to physically associate with proteins other than MDM2 and to have p53-independent activities, most of which remain controversial and poorly understood.
                Bookmark

                Author and article information

                Journal
                Cell Death Discov
                Cell Death Discov
                Cell Death Discovery
                Nature Publishing Group
                2058-7716
                14 August 2017
                2017
                : 3
                : 17036
                Affiliations
                [1 ]Department of Biology, School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
                [2 ]College of Basic Medicine, Wuhan University , Wuhan 430071, China
                [3 ]Shandong Analysis and Test Center, Shandong Academy of Sciences , 19 Keyuan Street, Jinan 250014, China
                [4 ]Department of Urology, Shenzhen University Luohu Hospital, Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group , Shenzhen 51800, China
                Author notes
                [5]

                These authors contributed equally to this work.

                Article
                cddiscovery201736
                10.1038/cddiscovery.2017.36
                5554797
                28811933
                98ea848b-2dcc-45d6-bca3-498921aa7efd
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 March 2017
                : 30 April 2017
                Categories
                Review Article

                Comments

                Comment on this article