1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maturation of small nucleolar RNAs: from production to function

      review-article
      a , b , b
      RNA Biology
      Taylor & Francis
      Small nucleolar RNA, snoRNA, snoRNA maturation, snoRNP assembly, non-coding RNA processing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.

          Related collections

          Most cited references301

          • Record: found
          • Abstract: found
          • Article: not found

          Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

          Ubiquitin-positive, tau- and alpha-synuclein-negative inclusions are hallmarks of frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Although the identity of the ubiquitinated protein specific to either disorder was unknown, we showed that TDP-43 is the major disease protein in both disorders. Pathologic TDP-43 was hyper-phosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments and was recovered only from affected central nervous system regions, including hippocampus, neocortex, and spinal cord. TDP-43 represents the common pathologic substrate linking these neurodegenerative disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Polycomb complex PRC2 and its mark in life.

            Polycomb group proteins maintain the gene-expression pattern of different cells that is set during early development by regulating chromatin structure. In mammals, two main Polycomb group complexes exist - Polycomb repressive complex 1 (PRC1) and 2 (PRC2). PRC1 compacts chromatin and catalyses the monoubiquitylation of histone H2A. PRC2 also contributes to chromatin compaction, and catalyses the methylation of histone H3 at lysine 27. PRC2 is involved in various biological processes, including differentiation, maintaining cell identity and proliferation, and stem-cell plasticity. Recent studies of PRC2 have expanded our perspectives on its function and regulation, and uncovered a role for non-coding RNA in the recruitment of PRC2 to target genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of RNA modifications in cancer

              Specific chemical modifications of biological molecules are an efficient way of regulating molecular function, and a plethora of downstream signalling pathways are influenced by the modification of DNA and proteins. Many of the enzymes responsible for regulating protein and DNA modifications are targets of current cancer therapies. RNA epitranscriptomics, the study of RNA modifications, is the new frontier of this arena. Despite being known since the 1970s, eukaryotic RNA modifications were mostly identified on transfer RNA and ribosomal RNA until the last decade, when they have been identified and characterized on mRNA and various non-coding RNAs. Increasing evidence suggests that RNA modification pathways are also misregulated in human cancers and may be ideal targets of cancer therapy. In this Review we highlight the RNA epitranscriptomic pathways implicated in cancer, describing their biological functions and their connections to the disease.
                Bookmark

                Author and article information

                Journal
                RNA Biol
                RNA Biol
                RNA Biology
                Taylor & Francis
                1547-6286
                1555-8584
                5 October 2023
                2023
                5 October 2023
                : 20
                : 1
                : 715-736
                Affiliations
                [a ]Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University; , Atlanta, Georgia, USA
                [b ]Department of Biochemistry, Emory University; , Atlanta, Georgia, USA
                Author notes
                CONTACT Homa Ghalei hghalei@ 123456emory.edu Department of Biochemistry, Emory University; , Atlanta, Georgia 30322, USA
                Author information
                https://orcid.org/0000-0002-9716-3249
                https://orcid.org/0000-0003-0168-4654
                Article
                2254540
                10.1080/15476286.2023.2254540
                10557570
                37796118
                988f0b63-7733-499d-87d3-c8fb1dcac673
                © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 3, Tables: 1, References: 304, Pages: 22
                Categories
                Review Article
                Review

                Molecular biology
                small nucleolar rna,snorna,snorna maturation,snornp assembly,non-coding rna processing

                Comments

                Comment on this article