26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis

      research-article
      , , , ,
      Arthritis Research & Therapy
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Osteoarthritis (OA) is a common joint disease that can cause gradual disability among the aging population. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor that regulates the expression of phase II antioxidant enzymes that provide protection against oxidative stress and tissue damage. The use of histone deacetylase inhibitors (HDACi) has emerged as a potential therapeutic strategy for various diseases. They have displayed chondroprotective effects in various animal models of arthritis. Previous studies have established that Nrf2 acetylation enhances Nrf2 functions. Here we explore the role of Nrf2 in the development of OA and the involvement of Nrf2 acetylation in HDACi protection of OA.

          Methods

          Two OA models—monosodium iodoacetate (MIA) articular injection and destabilization of the medial meniscus (DMM)—were used with wild-type (WT) and Nrf2-knockout (Nrf2-KO) mice to demonstrate the role of Nrf2 in OA progression. A pan-HDACi, trichostatin A (TSA), was administered to examine the effectiveness of HDACi on protection from cartilage damage. The histological sections were scored. The expression of OA-associated matrix metalloproteinases (MMPs) 1, 3, and 13 and proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were assayed. The effectiveness of HDACi on OA protection was compared between WT and Nrf2-KO mice.

          Results

          Nrf2-KO mice displayed more severe cartilage damage in both the MIA and DMM models. TSA promoted the induction of Nrf2 downstream proteins in SW1353 chondrosarcoma cells and in mouse joint tissues. TSA also reduced the expression of OA-associated proteins MMP1, MMP3, and MMP13 and proinflammatory cytokines TNF-α, IL-1β, and IL-6. TSA markedly reduced the cartilage damage in both OA models but offered no significant protection in Nrf2-KO mice.

          Conclusions

          Nrf2 has a major chondroprotective role in progression of OA and is a critical molecule in HDACi-mediated OA protection.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice.

          Increasing evidence suggests that oxidative stress may play a key role in joint destruction due to rheumatoid arthritis (RA). The aim of this study was to elucidate the role of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that maintains the cellular defence against oxidative stress, in RA. The activation status of Nrf2 was assessed in synovial tissue from patients with RA using immunohistochemistry. Antibody-induced arthritis (AIA) was induced in Nrf2-knockout and Nrf2-wild-type control mice. The severity of cartilage destruction was evaluated using a damage score. The extent of oxidative stress, the activation state of Nrf2 and the expression level of Nrf2 target genes were analysed by immunhistological staining. The expression of vascular endothelial growth factor (VEGF)-A was examined on mRNA and protein using the Luminex technique. A Xenogen imaging system was used to measure Nrf2 activity in an antioxidant response element-luciferase transgenic mouse during AIA. Nrf2 was activated in the joints of arthritic mice and of patients with RA. Nrf2-knockout mice had more severe cartilage injuries and more oxidative damage, and the expression of Nrf2 target genes was enhanced in Nrf2-wild-type but not in knockout mice during AIA. Both VEGF-A mRNA and protein expression was upregulated in Nrf2-knockout mice during AIA. An unexpected finding was the number of spontaneously fractured bones in Nrf2-knockout mice with AIA. These results provide strong evidence that oxidative stress is significantly involved in cartilage degradation in experimental arthritis, and indicate that the presence of a functional Nrf2 gene is a major requirement for limiting cartilage destruction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Is osteoarthritis a metabolic disease?

            Obesity, together with aging and injury, is among the main risk factors for osteoarthritis. Obesity-related osteoarthritis can affect not only the weight-bearing joints, but also the hands, suggesting a role for circulating mediators released by the adipose tissue and known as adipokines. Thus, osteoarthritis may have a systemic metabolic component. Evidence from both epidemiological and biological studies support the concept of metabolic osteoarthritis, defined as a broad clinical phenotype that includes obesity-related osteoarthritis. Thus, osteoarthritis can be related to metabolic syndrome or to an accumulation of metabolic abnormalities. In addition, studies have demonstrated associations linking osteoarthritis to several components of the metabolic syndrome, such as hypertension and type 2 diabetes, independently from obesity or any of the other known risk factors for osteoarthritis. Both in vitro and in vitro findings indicate a deleterious effect of lipid and glucose abnormalities on cartilage homeostasis. Chronic low-grade inflammation is a feature shared by osteoarthritis and metabolic disorders and may contribute to the genesis of both. Thus, osteoarthritis is emerging as a disease that has a variety of phenotypes including a metabolic phenotype, in addition to the age-related and injury-related phenotypes. Copyright © 2013 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells.

              The antioxidant-activated transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the induction of cytoprotective genes against chemical toxicity and oxidative injuries. The role of phosphorylation in Nrf2 activation has been suggested but remains elusive. We report that phenolic antioxidant/pro-oxidant tert-butylhydroquinone (tBHQ) induced two forms of the Nrf2 protein in neuroblastoma cells (IMR-32), which migrated as distinctive bands on SDS-PAGE. In vitro treatment with lambda phosphatase eliminated the slower migrating form and increased the amount of the faster migrating form of Nrf2. In vivo (32)Pi-phosphorylation resulted in (32)Pi-labeling of the Nrf2 protein in the presence of tBHQ that can be dephosphorylated by lambda phosphotase, indicating that the slower migrating form is a phosphorylated Nrf2 protein and the faster form an unphosphorylated Nrf2. Unphosphorylated Nrf2 predominated in the cytoplasm, whereas the phosphorylated form preferentially localized in the nucleus. Nuclear Nrf2 can be dephosphorylated by lambda phosphotase in vitro and be converted to the faster migrating form, implicating phosphorylation of Nrf2 in the cytoplasmic-nuclear translocation of the protein. Deletional analyses from both the carboxyl- and amino-ends revealed the transcription activation (TA) domains Neh4 (Nrf2-ECH homology 4) and Neh5 (Nrf2-ECH homology 5) as a major region necessary for the phosphorylation. The TA domains are characterized by the presence of multiple phosphorylation sites of casein kinase 2 (CK2). Moreover, CK2 phosphorylated the TA domains in vitro. Treatment with CK2 inhibitor 2-dimethylamino-4,5,6,7,-tetrabromo-1H-benzimidazole (DMAT) blocked the induction of endogenous target genes of Nrf2 in cells and inhibited the TA activities of both the full length and the TA domains of Nrf2 to a large extent. Finally, phosphorylation of the TA domains correlated with the nuclear translocation of Nrf2 that was inhibited by DMAT in a concentration-dependent manner. The findings demonstrated that phosphorylation of Nrf2 at the TA domains by CK2 is an integral component of Nrf2 activation necessary for the nuclear localization and transcription activation function of Nrf2 in neuroblastoma cells. (c) 2008 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                850565332@qq.com
                sswwyql@163.com
                yangjuni0704@163.com
                qingj@nju.edu.cn
                wangsencao@nju.edu.cn
                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                26 September 2015
                26 September 2015
                2015
                : 17
                : 269
                Affiliations
                [ ]Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093 People’s Republic of China
                [ ]Center of Diagnosis and Treatment for Joint Disease, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, 210008 People’s Republic of China
                [ ]Model Animal Research Center of Nanjing University, Nanjing, 210032 People’s Republic of China
                [ ]National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016 People’s Republic of China
                Article
                774
                10.1186/s13075-015-0774-3
                4583998
                26408027
                98820513-2a00-4717-bd56-851fdcd6386b
                © Cai et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 February 2015
                : 4 September 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Orthopedics
                Orthopedics

                Comments

                Comment on this article