16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long Non-Coding RNA HOXA11-AS Promotes Non-Small Cell Lung Cancer Tumorigenesis Through microRNA-148a-3p/DNMT1 Regulatory Axis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Our present study aimed to further investigate the molecular basis of long non-coding RNA homeobox A11 antisense (HOXA11-AS) in the tumorigenesis of non-small cell lung cancer (NSCLC).

          Methods

          HOXA11-AS, microRNA-148a-3p (miR-148a-3p), and DNA methyltransferase 1 (DNMT1) mRNA levels were measured by RT-qPCR assay. DNMT1 protein level was determined by Western blot assay. Cell proliferative capacity and apoptotic rate were determined by CCK-8 assay and flow cytometry analysis, respectively. The relationships of HOXA11-AS, miR-148a-3p, and DNMT1 were tested through bioinformatics analysis, luciferase assay, and RNA pull down assay. Mouse xenograft models of NSCLC were established to examine the biological function of HOXA11-AS in vivo.

          Results

          HOXA11-AS expression was notably upregulated and miR-148a-3p expression was conspicuously downregulated in NSCLC tissues and cells. HOXA11-AS knockdown curbed NSCLC cell proliferation and promoted cell apoptosis through directly increasing miR-148a-3p expression. Moreover, miR-148a-3p overexpression suppressed NSCLC cell proliferation and induced cell apoptosis. HOXA11-AS functioned as a competing endogenous RNA (ceRNA) of miR-148a-3p to increase DNMT1 expression in NSCLC cells. And, DNMT1 upregulation weakened the influence of HOXA11-AS1 loss on NSCLC cell proliferation and apoptosis. Additionally, HOXA11-AS knockdown suppressed NSCLC xenograft growth by upregulating miR-148a-3p and downregulating DNMT1 in vivo.

          Conclusion

          HOXA11-AS facilitated NSCLC tumorigenesis through miR-148a-3p/DNMT1 axis in vitro and in vivo, deepening our understanding of the molecular basis of HOXA11-AS in the development of NSCLC.

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Overview of microRNA biology.

          In considering an overview of microRNA biology, it is useful to consider microRNAs as a part of cellular communication. At the simplest level, microRNAs act to decrease the expression of messenger RNAs that contain stretches of sequence complementary to the microRNA. This function can be likened to the function of endogenous or synthetic short interfering RNA. However, microRNA function is more complicated and nuanced than this "on-off" model would suggest. Further, many microRNA targets are themselves noncoding RNAs. In this review, the authors discuss the role of microRNAs in shaping the proteome of the cell in a way that is consistent with microRNA involvement in a highly regulated conversation, sensitive to outside influence and internal feedback.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT1.

            Long noncoding RNAs (lncRNA) have been implicated in human cancer but their mechanisms of action are mainly undocumented. In this study, we investigated lncRNA alterations that contribute to gastric cancer through an analysis of The Cancer Genome Atlas RNA sequencing data and other publicly available microarray data. Here we report the gastric cancer-associated lncRNA HOXA11-AS as a key regulator of gastric cancer development and progression. Patients with high HOXA11-AS expression had a shorter survival and poorer prognosis. In vitro and in vivo assays of HOXA11-AS alterations revealed a complex integrated phenotype affecting cell growth, migration, invasion, and apoptosis. Strikingly, high-throughput sequencing analysis after HOXA11-AS silencing highlighted alterations in cell proliferation and cell-cell adhesion pathways. Mechanistically, EZH2 along with the histone demethylase LSD1 or DNMT1 were recruited by HOXA11-AS, which functioned as a scaffold. HOXA11-AS also functioned as a molecular sponge for miR-1297, antagonizing its ability to repress EZH2 protein translation. In addition, we found that E2F1 was involved in HOXA11-AS activation in gastric cancer cells. Taken together, our findings support a model in which the EZH2/HOXA11-AS/LSD1 complex and HOXA11-AS/miR-1297/EZH2 cross-talk serve as critical effectors in gastric cancer tumorigenesis and progression, suggesting new therapeutic directions in gastric cancer. Cancer Res; 76(21); 6299-310. ©2016 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basic biology and therapeutic implications of lncRNA.

              Long non-coding RNAs (lncRNA), a class of non-coding RNA molecules recently identified largely due to the efforts of FANTOM, and later GENCODE and ENCODE consortia, have been a subject of intense investigation in the past decade. Extensive efforts to get deeper understanding of lncRNA biology have yielded evidence of their diverse structural and regulatory roles in protecting chromosome integrity, maintaining genomic architecture, X chromosome inactivation, imprinting, transcription, translation and epigenetic regulation. Here we will briefly review the recent studies in the field of lncRNA biology focusing mostly on mammalian species and discuss their therapeutic implications.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OTT
                ott
                OncoTargets and therapy
                Dove
                1178-6930
                17 December 2019
                2019
                : 12
                : 11195-11206
                Affiliations
                [1 ]Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital , Gansu, People’s Republic of China
                [2 ]Department of Radiology, Gansu Provincial Cancer Hospital , Gansu, People’s Republic of China
                Author notes
                Correspondence: Rong Niu Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital , No.2, Little West Lake, East Street, Qilihe District, Lanzhou City, Gansu Province, People’s Republic of ChinaTel +86-13893604704 Email rhjren12@sina.com
                Article
                198367
                10.2147/OTT.S198367
                6927266
                31908486
                9873761c-d03b-4f86-897b-86aaa7249160
                © 2019 Bai et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 15 December 2018
                : 01 October 2019
                Page count
                Figures: 6, References: 49, Pages: 12
                Categories
                Original Research

                Oncology & Radiotherapy
                non-small cell lung cancer,tumorigenesis,hoxa11-as,mir-148a-3p,dnmt1
                Oncology & Radiotherapy
                non-small cell lung cancer, tumorigenesis, hoxa11-as, mir-148a-3p, dnmt1

                Comments

                Comment on this article