17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Direct Determination of Resonance Energy Transfer in Photolyase: Structural Alignment for the Functional State

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH , and the corresponding orientation factors (κ 2) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found

          Lessons from nature about solar light harvesting.

          Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules; this electronic excitation is subsequently transferred to a suitable acceptor. For example, in photosynthesis, antenna complexes capture sunlight and direct the energy to reaction centres that then carry out the associated chemistry. In this Review, we describe the principles learned from studies of various natural antenna complexes and suggest how to elucidate strategies for designing light-harvesting systems. We envisage that such systems will be used for solar fuel production, to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control, or to transfer excitons over long distances. Also described are the notable properties of light-harvesting chromophores, spatial-energetic landscapes, the roles of excitonic states and quantum coherence, as well as how antennas are regulated and photoprotected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-range resonance energy transfer in molecular systems.

            The current state of understanding of molecular resonance energy transfer (RET) and recent developments in the field are reviewed. The development of more general theoretical approaches has uncovered some new principles underlying RET processes. This review brings many of these important new concepts together into a generalization of Förster's original theory. The conclusions of studies investigating the various approximations in Förster theory are summarized. Areas of present and future activity are discussed. The review covers Förster theory for donor-acceptor pairs and electronic coupling for singlet-singlet, triplet-triplet, and superexchange-mediated energy transfer. This includes the transition density picture of Coulombic coupling as well as electronic coupling between molecular aggregates (excitons). Spectral overlaps and ensemble energy transfer rates in disordered aggregates, the role of dielectric properties of the medium, weak versus strong coupling, and new models for energy transfer in complex molecular assemblies are also described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna.

              Energy transfer from light-harvesting carotenoids to chlorophyll is common in photosynthesis, but such antenna pigments have not been observed in retinal-based ion pumps and photoreceptors. Here we describe xanthorhodopsin, a proton-pumping retinal protein/carotenoid complex in the eubacterium Salinibacter ruber. The wavelength dependence of the rate of pumping and difference absorption spectra measured under a variety of conditions indicate that this protein contains two chromophores, retinal and the carotenoid salinixanthin, in a molar ratio of about 1:1. The two chromophores interact strongly, and light energy absorbed by the carotenoid is transferred to the retinal with a quantum efficiency of approximately 40%. The antenna carotenoid extends the wavelength range of the collection of light for uphill transmembrane proton transport.
                Bookmark

                Author and article information

                Journal
                J Phys Chem A
                J Phys Chem A
                jx
                jpcafh
                The Journal of Physical Chemistry. a
                American Chemical Society
                1089-5639
                1520-5215
                08 July 2015
                08 July 2014
                13 November 2014
                : 118
                : 45 , Current Topics in Photochemistry
                : 10522-10530
                Affiliations
                []Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University , 191 West Woodruff Avenue, Columbus, Ohio 43210, United States
                []Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology , Roslagstullsbacken 15, SE-10691 Stockholm, Sweden
                []Department of Biochemistry and Biophysics, University of North Carolina School of Medicine , 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
                Author notes
                [* ]E-mail: zhong.28@ 123456osu.edu . Tel: (614)-292-3044.
                Article
                10.1021/jp504349b
                4234433
                25000823
                986cc58e-5286-4a81-b2a0-9f7c272c2bd4
                Copyright © 2014 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 03 May 2014
                : 07 July 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                jp504349b
                jp-2014-04349b

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article