30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactions with M Cells and Macrophages as Key Steps in the Pathogenesis of Enterohemorragic Escherichia coli Infections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enterohemorrhagic Escherichia coli (EHEC) are food-borne pathogens that can cause serious infections ranging from diarrhea to hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Translocation of Shiga-toxins (Stx) from the gut lumen to underlying tissues is a decisive step in the development of the infection, but the mechanisms involved remain unclear. Many bacterial pathogens target the follicle-associated epithelium, which overlies Peyer's patches (PPs), cross the intestinal barrier through M cells and are captured by mucosal macrophages. Here, translocation across M cells, as well as survival and proliferation of EHEC strains within THP-1 macrophages were investigated using EHEC O157:H7 reference strains, isogenic mutants, and 15 EHEC strains isolated from HC/HUS patients. We showed for the first time that E. coli O157:H7 strains are able to interact in vivo with murine PPs, to translocate ex vivo through murine ileal mucosa with PPs and across an in vitro human M cell model. EHEC strains are also able to survive and to produce Stx in macrophages, which induce cell apoptosis and Stx release. In conclusion, our results suggest that the uptake of EHEC by M cells and underlying macrophages in the PP may be a critical step in Stx translocation and release in vivo. A new model for EHEC infection in humans is proposed that could help in a fuller understanding of EHEC-associated diseases.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections.

          Since their initial recognition 20 years ago, Shiga toxin-producing Escherichia coli (STEC) strains have emerged as an important cause of serious human gastrointestinal disease, which may result in life-threatening complications such as hemolytic-uremic syndrome. Food-borne outbreaks of STEC disease appear to be increasing and, when mass-produced and mass-distributed foods are concerned, can involve large numbers of people. Development of therapeutic and preventative strategies to combat STEC disease requires a thorough understanding of the mechanisms by which STEC organisms colonize the human intestinal tract and cause local and systemic pathological changes. While our knowledge remains incomplete, recent studies have improved our understanding of these processes, particularly the complex interaction between Shiga toxins and host cells, which is central to the pathogenesis of STEC disease. In addition, several putative accessory virulence factors have been identified and partly characterized. The capacity to limit the scale and severity of STEC disease is also dependent upon rapid and sensitive diagnostic procedures for analysis of human samples and suspect vehicles. The increased application of advanced molecular technologies in clinical laboratories has significantly improved our capacity to diagnose STEC infection early in the course of disease and to detect low levels of environmental contamination. This, in turn, has created a potential window of opportunity for future therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response.

            The mucosal immune system forms the largest part of the entire immune system, containing about three-quarters of all lymphocytes and producing grams of secretory IgA daily to protect the mucosal surface from pathogens. To evoke the mucosal immune response, antigens on the mucosal surface must be transported across the epithelial barrier into organized lymphoid structures such as Peyer's patches. This function, called antigen transcytosis, is mediated by specialized epithelial M cells. The molecular mechanisms promoting this antigen uptake, however, are largely unknown. Here we report that glycoprotein 2 (GP2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for mucosal antigens. Recombinant GP2 protein selectively bound a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane. Consistently, these bacteria were colocalized with endogenous GP2 on the apical plasma membrane as well as in cytoplasmic vesicles in M cells. Moreover, deficiency of bacterial FimH or host GP2 led to defects in transcytosis of type-I-piliated bacteria through M cells, resulting in an attenuation of antigen-specific immune responses in Peyer's patches. GP2 is therefore a previously unrecognized transcytotic receptor on M cells for type-I-piliated bacteria and is a prerequisite for the mucosal immune response to these bacteria. Given that M cells are considered a promising target for oral vaccination against various infectious diseases, the GP2-dependent transcytotic pathway could provide a new target for the development of M-cell-targeted mucosal vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shiga toxins--from cell biology to biomedical applications.

              Shiga toxin-producing Escherichia coli is an emergent pathogen that can induce haemolytic uraemic syndrome. The toxin has received considerable attention not only from microbiologists but also in the field of cell biology, where it has become a powerful tool to study intracellular trafficking. In this Review, we summarize the Shiga toxin family members and their structures, receptors, trafficking pathways and cellular targets. We discuss how Shiga toxin affects cells not only by inhibiting protein biosynthesis but also through the induction of signalling cascades that lead to apoptosis. Finally, we discuss how Shiga toxins might be exploited in cancer therapy and immunotherapy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                17 August 2011
                : 6
                : 8
                : e23594
                Affiliations
                [1 ]Clermont Université, Université d'Auvergne, Centre de Recherche en Nutrition Humaine Auvergne, JE 2526 Evolution des bactéries pathogènes et susceptibilité génétique de l'hôte, Clermont-Ferrand, France
                [2 ]INRA, Institut National Recherche Agronomique, Unité Sous Contrat USC-2018, Clermont-Ferrand, France
                [3 ]Clermont Université, Université d'Auvergne, Centre de Recherche en Nutrition Humaine Auvergne, ERT 18, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
                [4 ]Clermont Université, Université d'Auvergne, UFR Pharmacie, Clermont-Ferrand, France
                [5 ]CHU Clermont Ferrand, Pôle des Pathologies Digestives, Clermont-Ferrand, France
                [6 ]CHU Clermont-Ferrand, Service Bactériologie Mycologie Parasitologie, Clermont-Ferrand, France
                Indian Institute of Science, India
                Author notes

                Conceived and designed the experiments: LE-M BC JD AD-M NP VL. Performed the experiments: LE-M BC PS JD NP. Analyzed the data: LE-M BC PS JD SB-D AD-M NP VL. Contributed reagents/materials/analysis tools: LE-M BC PS JD SB-D AD-M NP VL. Wrote the paper: LE-M NP VL.

                [¤]

                Current address: Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds, UMR_D 180, Université de Provence et de la Méditerranée, Marseille, France

                Article
                PONE-D-11-05227
                10.1371/journal.pone.0023594
                3157389
                21858177
                983eab82-7eac-45c7-ba37-6094ac8aba99
                Etienne-Mesmin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 March 2011
                : 21 July 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Microbiology
                Bacterial Pathogens
                Escherichia Coli
                Gram Negative
                Emerging Infectious Diseases
                Host-Pathogen Interaction
                Medical Microbiology
                Microbial Pathogens
                Pathogenesis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article