14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Artificial Intelligence Models for Evapotranspiration Prediction along the Southern Coast of Turkey

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reference evapotranspiration ET o is one of the most significant factors in the hydrological cycle since it has a great influence on water resource planning and management, agriculture and irrigation management, and other processes in the hydrological sector. In this study, an efficient and local predictive model was established to forecast the monthly mean ET o t over Turkey based on the data collected from 35 locations. For this purpose, twenty input combinations including hydrological and geographical parameters were introduced to three different approaches called multiple linear regression MLR , random forest RF , and extreme learning machine ELM . Moreover, in this study, large investigation was done, involving the establishment of 60 models and their assessment using ten statistical measures. The outcome of this study revealed that the ELM approach achieved high accurate estimation in accordance with the Penman–Monteith formula as compared to other models such as MLR and RF . Moreover, among the 10 statistical measures, the uncertainty at 95% U 95 indicator showed an excellent ability to select the best and most efficient forecast model. The superiority of ELM in the prediction of mean monthly ET o over MLR and RF approaches is illustrated in the reduction of the U 95 parameter to 49.02% and 34.07% for RF and MLR models, respectively. Furthermore, it is possible to develop a local predictive model with the help of computer to estimate the ET o using the simplest and cheapest meteorological and geographical variables with acceptable accuracy.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Recent decline in the global land evapotranspiration trend due to limited moisture supply.

          More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land−a key diagnostic criterion of the effects of climate change and variability−remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Terrestrial water fluxes dominated by transpiration.

            Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A fast and accurate online sequential learning algorithm for feedforward networks.

              In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang et al. developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Complexity
                Complexity
                Hindawi Limited
                1099-0526
                1076-2787
                August 23 2021
                August 23 2021
                : 2021
                : 1-20
                Affiliations
                [1 ]Department of Civil Engineering, Al-Maaref University College, Ramadi, Iraq
                [2 ]Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
                [3 ]Iraqi Federal Board of Supreme Audit, Baghdad, Iraq
                [4 ]Department of Civil Engineering, Cairo University, Cairo, Egypt
                [5 ]Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
                [6 ]National Chair of Materials Science and Metallurgy, University of Nizwa, Nizwa, Oman
                Article
                10.1155/2021/8850243
                982334af-b307-475c-8e6c-ef797b5c3a76
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article